TM-71-1025-1

TECHNICAL
MEMORANDUM

T.l

ER SYSTEMS MANUAL

1]

CHED

S

Bellcomm

- ———

BA-145A (8-68)

BELLCOMM, INC.
955 LENFANT PLAZA NORTH, SW. WASHINGTON, DC. 20024

COVER SHEET FOR TECHNICAL MEMORANDUM

TITLE- The Automated Task Scheduler Systems ™ 71-1025-1
Manual

DATE- February 12, 1971

FILING CASE NO(S)- 610 AUTHOR(S)- A. B. Baker

FILING SUBJECT(S)- Flight Planning, Mission Timelining,
(ASSIGNED BY AUTHOR(S)- Resource Allocation, Scheduling

ABSTRACT

This report presents the system level documentation
on the Automated Task Scheduler (ATS) System, a set of computer
programs designed to produce and display timelines of in-flight
activities for manned space missions. The programs are intended

to be used for investigations into the process of flight
scheduling.

The system consists of three programs: a Schedule
Generator, a Data Processor, and a Data Bank Generator. The
Schedule Generator (46,200 words) is the major program in the
system. It uses a "window-filling" technique to generate time
histories of allocations for each of several designated resources
(e.g., crewmen, electrical power, pieces of equipment, etc.).

The program may be used to generate a completely new schedule

or to complete a partial schedule generated by a previous run.
The latter feature can be used to investigate the effects of
variations in a basically desirable schedule. The Data Processor
(35,100 words) is used to produce graphical displays of the
timeline data produced by the Schedule Generator while the Data
Bank Generator (22,800 words) is used to create and maintain a
Task Data Bank, a data library containing descriptions of all
tasks that may be considered for scheduling on a given mission.

The system has been implemented on Bellcomm's UNIVAC-.
1108 computer. The programs are written primarily in FORTRAN V,
SAC-1 (a FORTRAN-imbedded list-processing language), and 1108
Assembly Language. List~processing and dynamic array storage
were used to increase the efficiency of computer storage utili-

LAVl

BELLCOMM, INC.

TABLE OF CONTENTS

1.0 Introduction
2.0 The ATS Scheduling Algorithm

2.1 Selection of a Candidate Task

2.2 Identification of Scheduling Opportunities
for a Candidate Task

2,3 Selection of Task Start-Times

3.0 ATS System Description

3.1 The Data Bank Generator
3.2 The Schedule Generator
3.3 The Data Processor

4.0 The ATS Task Description Language

4.1 Language Structure

4.2 Card Formats

4.3 Generating a New Task Description
4.4 Modifying a Task Description

4.5 The Description Card Data Deck

5.0 The ATS Internal Data Structure

5.1 Dynamic Array Storage
5.2 Linked-List Storage
5.3 Auxiliary Storage

6.0 Functional Description of the Data Bank Generator
7.0 Functional Description of the Schedule Generator

7.1 Executive Control
7.2 Initialization

7.3 The Window-Finder
7.4 The Scheduler Area

8.0 Functional Description of the Data Processor

8.1 Generation of Plots Using the SC-4020
and AUPLOT Systems

8.2 Data Processor Executive Control and
Initialization

8.3 Horizontal Plot Generation Area

8.4 Vertical Plot Generation Area

9.0 The ATS Job Decks

9.1 Job Deck for the Data Bank Generator
9.2 Job Deck for the ATS Schedule Generator
9.3 Job Deck for the ATS Data Processor

10.0 Recommendations for Future Work
11.0 Summary
References

A.0 Appendix - ATS Error Diagnostics

BELLCOMM. INC.
955 L'ENFANT PLAZA NORTH, SW. WASHINGTON, D.C. 20024

SUBJECT: The Automated Task Scheduler pate: February 12, 1971
Systems Manual - Case 610

FROM: A. B. Baker

T™™-71-1025-1

TECHNICAL MEMORANDUM

1.0 Introduction

The Automated Task Scheduler (ATS) System is a
group of computer programs designed to produce and display
mission timelines (schedules) for manned space missions at
the level of detail normally found in a flight plan. The
system is intended to be used primarily for investigations
of the flight scheduling process.

The incentive to develop the ATS stems from the
increase in the duration of future manned space missions
compared to those in previous missions. Flight scheduling
for the relatively short duration missions in the Mercury,
Gemini,' and Apollo Programs was performed manually. However,
missions in the Skylab Program are to last for one to two
months and missions of even longer duration are planned for
the post-Skylab period. The increased duration of these
missions will significantly increase the complexity of sched-
uling. This increase provides the motivation for attempting
to automate as much of the scheduling process as possible in
order to: (1) reduce the burden of tedious manual scheduling,

and (2) decrease the time required to construct detailed time-
lines.

At the beginning of the present effort, a review of
the state-of-the-art found that a number of automated sched-
ulers had already been built (Reference 1l). The review pro-
vided several concepts that have been used in the development
of the ATS. These include:

1. That the model be organized into three
distinct functional areas -- Input and
Data Preparation, Scheduler, and Processor.

2. That the model be sufficiently modular
so that each function and major sub-
function is as isolated as possible from
the rest of the model. This structure
facilitates evaluation of different com-
putational techniques in each area.

BELLCOMM, INC. 1-2

That data libraries or "data banks" be
established which would contain the large
amounts of input data required by a
scheduler. The banks, stored on magnetic
tape or FASTRAND file, would simplify the
input card decks for each computer run.

That spacecraft ephemeris data be
generated independently of the scheduler.

That provision be made for analysis of
timelines generated by the scheduler.

BELLCOMM, INC.

2.0 The ATS Scheduling Algorithm

The primary objective of an automated scheduler

is to assemble a given set of tasks into a self-consistent
timeline within the structure defined by mission constraints,
subsystem capabilities, and inter-task constraints. In the
ATS a task is described, in part, by a set of resource*
allocation requests. Each request or requirement specifies
that a particular resource be allocated to the task during
each performance of the task. Therefore, the ATS does not
generate a single mission timeline but rather a set of time-
lines, each timeline describing the time history of the
allocations of one resource over the duration of the mission.

The timelines are produced by repeated cyclings
through a basic three-step sequence:

Step 1l: Select a task from those tasks not
yvet considered.

Step 2: Identify opportunities where the
candidate task can be scheduled.

Step 3: Select one or more opportunities
and commit the task to those places
in the appropriate resource time-
lines.

After the candidate task is selected, the entire mission
duration is searched for acceptable scheduling opportunities.
Task performances may then be scheduled at any of these
opportunities. The method of scheduling tasks at acceptable
opportunities anywhere over the mission duration is known as
the "window-filling" scheduling technique. It is illustrated
in Figure 2.1.

Note that the sequence is repeated once for each
task. At that time a decision is made whether or not to
schedule the candidate task and if so, which of the scheduling
opportunities to utilize. Once made, the decisions are
irrevocable for the remainder of the scheduling process (one
computer 'run').

*Examples of resources include a crewman, a piece of
equipment, electrical power, etc.

2-2

"FNDINHIIL ONITNAIHIS ONITTIJ-MOANIM IFHL — L°'Z 3HNOI4

-
‘
INITINIL IHL NI AQYIHTIVY SHISYL k

ASVL ILVAIANYD

g%

2|9 A W

PRECEDING PAGE BLANK NOT FlLMiw

-§

BELLCOMM, INC. 2-3

2.1 Selection of a Candidate Task

A task's position in the sequence of candidate
selection will have a marked effect on the number of
scheduling opportunities available for that task. Hence,
some method should be available to select the candidate
tasks in the most advantageous order, i.e., in a sequence
that maximizes the number of tasks that are scheduled.

One particularly useful method of ranking
consists of assigning a number to each task. Tasks are
then ranked according to the relative magnitudes of these
assigned numbers (or priorities) and considered for
scheduling in the resulting order. There are two basic
types of priorities: static and dynamic. Static
priorities are assigned to each task by the user before
the scheduling process begins. The numerical values
represent the user's estimate of the relative difficulty
of scheduling and remain constant throughout the scheduling
process.

As noted above, the number of scheduling
opportunities available for any task depends upon the
commitments$ already made at the time the task is being
considered. As the scheduling process continues, and
more commitments are made, the number of scheduling
opportunities for each task will decrease, and hence the
difficulty with which the tasks can be scheduled will
increase. Rather than remain constant, the priorities
for the remaining tasks might be revised each time a task
is scheduled to reflect changes in scheduling difficulty.
Candidate tasks would then be selected for scheduling in
descending order of the latest assigned priorities.
Priorities that are revised during the scheduling process
are called "dynamic" priorities.

An optimum ranking system would combine the
features of the static and dynamic systems. The difficulty
in implementing such a system stems from the inability to
define meaningful criteria that can be used to calculate
dynamic priorities. Though many criteria have been suggested
(Reference 1), all tend to be arbitrary and highly dependent

BELLCOMM, INC. 2-4

upon the user's objectives and opinions. Therefore, the
current version of the ATS uses static priorities to rank
the tasks for candidate selection.*

2.2 1Identification of Scheduling Opportunities
For a Candidate Task

As noted above, a single performance of a task
may be described, in part, by a set of resource require-
ments (allocation requests) which must be met in order to
schedule the task. Figure 2.2 illustrates a general set
of resource requirements for a task. In the figure,
Requirement A might specify the services of a crewman,

B a second crewman, C a level of electrical power, etc.
As many requirements as needed may be specified.

Each resource requirement exists for a definite
interval of time. The length of the interval defines how
long the resource is to be allocated to the task while the
relative position of the interval defines when, during the
task performance, the resource is required. The relative
position of the intervals must, therefore, remain fixed.
To describe these relations, an arbitrary reference point
is selected and designated as the "start-time" of the task.
The endpoints of each requirement interval are then
assigned values indicating their positions relative to
that start-time and hence relative to each of the other
intervals. The endpoints may have any desired position
relative to the reference point. (Endpoints specified
prior to or subsequent to the start-time are equally
acceptable.)

Note that the start-time of the task serves as
a bridge between the relational time scale shown in the
Task Requirement Time Diagram and the actual mission
elapsed time scale (MET), for when the start-time of the
task is defined in MET, then all of the resource alloca-
tions will also be defined in MET.

In addition to these resource requirements, each
task has an associated set of performance constraints which
must also be met in order to schedule the task. There are
two types of constraints: those that define the performance
objectives (e.g., minimum number of performances, time

*The highest priority task has a priority of 1, the
cond highest a priority of 2, etc. Tasks with the same
priority are selected in the order in which they were
input to the program.

REQUIREMENT A

REQUIREMENT B

REQUIREMENT C

REQUIREMENT D

REQUIREMENT E

2-5

T

I
|
I
|
L
I
|
|
I
l
|
|
I
l
I
I
l
I
|
I
l

START-TIME

RELATIVE TIME ———

FIGURE 2.2 — TASK REQUIREMENT TIME DIAGRAM.

BELLCOMM, INC. 2-6

between performances, etc.) and those which place
restrictions on the time of performance (e.g., performance
on specific days, or with respect to the performance of
another task). Since the ATS uses mission time as the
basic independent variable, all resource regquirements and
performance restrictions are translated into restrictions
on the time of performance. '

An acceptable interval for the performance of
a task can now be defined as an interval of MET during
which all resource requirements as well as all performance
restrictions can be satisfied. As a corollary, an acceptable
start-time for a task is defined as a single value of MET
where the task start-time (Figure 2.2) can be placed with
the certainty that all of the task's resource requirements
and performance restrictions can be satisfied.

The ATS scheduling algorithm finds acceptable
start-time windows, i.e., continuous intervals of MET from
which a task start-time may be selected for each task.
These windows are determined by 'overlaying' the start-time
windows determined by considering individual resource
requirements and performance restrictions separately.

The process is illustrated in Figure 2.3. When only the

first requirement, Requirement A, is considered, the task

may be initiated at any time within one of the three start-
T]

]
1~ Al’ A2 - A2, A3 - A3. A range of
acceptable start-times for the task based on consideration
1]
of Requirement B is then determined for the window Ay - Aj.

time windows: A

In the case shown, the start-time window based only on

Requirement B exceeds the limits established by the boundary
1] 1]

points Al - Al' Therefore, the boundary points Al - Al now

represent a permissible start-time window based upon consid-
eration of both Requirements A and B. The boundary points

of this window are relabeled Bl - Bi. When Perfo$mance
Restriction C is considered over the range'Bl - Bl’ tw?
separate start-time windows emerge, Cl - Cl and C2 - C2.
The process is repeated again by considering Performance
Restriction D over the range of the window Cl - Ci. When
no acceptable start-time windows are found, the window

C, - C; is considered. When the last requifement, Require-

ment E, is considered over the range Dl - Dl’ the window

2.7

|
|Ev
)
|
!
_
|

MSVL V 404 MOGNIM JNIL-1HVLS 1SHId FHL 4O NOLLYNINYI LI — €2 34NOId

~+———— 3|1 NOISSIN

| _ _ |
T B I
))
| [
| |
L [
| T a la m _ |
[‘ | _ _
| | i
) ﬂ ﬂ _
|
“ _ S “
_Nb ¢ Lo ly)
} |
A
_ _
| | |
[ta lg]
A I
_ 1\
; | 1 __
1
Cy °y Ly by

3 LNJW3HIND3Y

a NOILOIY 1S3y
JONVINHO4H3d

J NOLLOIYLS3Y
JONVIWHOIH3Ad

9 LN3JW3HIND3Y

V LNJW3HIND3Y

JWILL

NOISSIW 40 aN3

NOISSIN TV101

o+ ———_—

BELLCOMM, INC. 2-8

El - El is obtained which represents the first acceptable

start-time window for the task. If the task is to be
performed only once during the mission, the search for
start-time windows is terminated when a window is found.
If the task is to be performed more than once, the search
is continued until all possible windows have been calcu-
lated.

2.3 Selection of Task Start-Times

After finding the acceptable task start-time
windows, the program selects start-times for as many
repetitions of the task as are required, by choosing
points within the start-time windows. If start-times
can be found for the minimum number of performances
required, the task is scheduled, i.e., the timelines of
the resources are updated to reflect the performance of
the task.

As noted above, the number of schedullng
opportunities for any given task is dependent upon commit-
ments already made at the time the task is being considered.
Hence, the selection of each task start-time will have some
impact on the availability of scheduling opportunities for sub-
sequent candidate tasks. Since no satisfactory method for
determining the impact of each selection was apparent, the
initial version of the ATS has been programmed to select
the earliest possible start-time for the performance of a
task. Other alternatives can be evaluated and may be explored
in future versions of the system.

BELLCOMM. ING.

3.0 ATS System Description

The ATS System has four primary capabilities. It
can

1. Generate a complete schedule (i.e., a
set of resource timelines),.

2. Complete a partial schedule generated
in a previous run,

3. Provide tabular and graphical outputs.

4. Create and maintain a Task Data Bank
(i.e., a data library containing
descriptions of all the tasks which
might be candidates for scheduling on
a given mission).

The ATS System flow diagram is shown in Figure 3.1. The
System consists of three separate computer programs:

1. A Data Bank Generator that creates and
edits a permanent task data bank,

2. A Schedule Generator that generates the
resource timelines described in Section
2.3, and

3. A Data Processor that displays the time-
line data in graphical form.

The programs are written primarily in FORTRAN V for the
UNIVAC 1108 computer. The current version of the ATS is
non-conversational (i.e., it must be run in the batch mode)

and utilizes externally generated ephemeris data (Section
3.2.1).

3.1 The Data Bank Generator

The Data Bank Generator is a small auxiliary

program that is uged either to create a new data bank or

to edit an existing bank. Task descriptions are input to

the program on punched cards in a specified format (Section
4.2). The cards are processed and the final task descriptions
are stored on magnetic tape (or FASTRAND file). The output
tape, or Data Bank, then contains the latest approved descrip-
tion of the tasks. These include personal tasks (e.g., sleep,

WYHOVIQ MOTd WILSAS S1V ~ L'E 3UNOIY LA S1v 2HA 01 TYNEALXS
ANIWHINOI ONY SWYHOOHd SILVIIAN] ——————

EELAR Idvd
RIEELELEE] SIH3IWIHLT
Siv dSYINO9

SINITINIL
viva
poves owouoss e
- viva WIHJIISLY
OHd 4vinavi
MNVE VIVa ASYL
,
3Idvl 10d 3dv1L HOLVYHINID
, 020v-05 AHOULSIH ANVYE
————— viva
| [1
, NOILI3S NOILO3S
| o | H31107d |
L | 020v-08 h HOS§3004d vIVO ¥31naaHos Ml 1ndNI
, "»]
IIIIIII —
HOLYH:ANID 3TNAIHOS
V1iva auvd

HOLYH3INIO
37NA3HOS

FdV1 AHOLSIH

BELLCOMM, INC. 3-3

breakfast, dinner, etc.), system housekeeping tasks, and
scientific experiments. Note that the bank must be main-
tained and updated as changes to the task descriptions are
approved.

3.2 The Schedule Generator

The Schedule Generator is the primary prodgram in
the ATS System. It uses the window-£filling algorithm
described in Section 2.2 to generate a table of commitments
(a timeline history) for each of the designated resources.
The program has two major subsections: the input section
which processes all of the input data and the scheduler
section which generates the resource timelines.

3.2.1 Schedule Generator Input Data

As shown in Figure 3.1, there are four sources of
input data: the Task Data Bank, the ATS Ephemeris Tape,*
card data, and the History Tape.* All sources except card
data are optional.

Ephemeris data is generated by a modified version*#
of the Bellcomm Apollo Simulation Program (BCMASP) and is
placed on a magnetic tape in tabular form, each table repre-
senting a time history of the availability of the named
"resource". Most tables represent line-of-sight contacts
between the spacecraft and a celestial or terrestrial "target"
such as the sun, an MSFN station, or a photographic objective.
Other tables are used to represent the spacecraft's position
in its orbit relative to certain cardinal points or areas,
€.g. the South Atlantic Anomaly, orbital noon, orbital mid-
night, etc.

The output tape generated by the BCMASP serves as
the input to a small conversion program named ATSEPHEM
(Reference 2). The latter selects the tables from the input
tape that are to be transmitted to the ATS and writes these
tables onto the ATS Ephemeris Tape in a format compatible
with the data storage configuration in the ATS (Section 5.1).

*These tape files can either be stored on magnetic tape
or FASTRAND mass storage.

**Maintenance by the Flight Mechanics Group of Depart-

ment 1025,

BELLCOMM, INC. 3-4

The functional format of an ephemeris table is
shown in Table 3.1. The table entries represent intervals
of continuous contact so that the spacecraft is shown in
contact with the resource during the intervals tll - t12'

t21 - t22, etc. As noted above, the ephemeris data need

only be input to the Schedule Generator if ephemeris require-
ments are specified in the descriptions of the tasks to be
scheduled. 1If no ephemeris requirements are specified, the
ephemeris tape is not needed to run the Schedule Generator.

Four types of card data are input to the Schedule
Generator: mission characteristics, system constraints,
program control cards, and task description data. The first
three types are input in the first section of the data deck

in free format. Task description data cards are input in
the second section.

The user can, if he so desires, input all of the
task descriptions directly to the Schedule Generator from
punched cards. The descriptions are stored on peripheral
drum storage for the duration of the run. These temporary
files are the sole source of task description data used by
the Schedule Generator. If the bulk of this data does not
vary from run to run, the user may alternately assign the
Data Bank as an input source and designate, via the program
control cards, which of the task descriptions on the bank
are to be used for that particular run. The specified tasks
are then copied from the Data Bank onto the temporary files
for the duration of the run.

The same task description cards are used to edit any
of the task descriptions stored on the drum files as well as to
add new tasks for the duration of the run. To provide the capa-
bility of manipulating the task descriptions, a Task Descrip-

- tion Language (TDL), used for specifying task requirements
and performance constraints, was developed for the ATS. The
language consists of 12 standard card formats. When used
appropriately, it enables the user to perform all of the
functions described above (i.e., to add, delete, and edit
task descriptions on the temporary files). The same language
and input structure are used for the Schedule Generator and
the Data Bank Generator. Details of the TDL and the associ-—
ated editing procedures are presented in Section 4.0.

3.2.2 Schedule Generator Output

The primary output of the Schedule Generator is a
set of resource commitment tables and a list of start-times

BELLCOMM, INC. 3-5

Table 3.1

Ephemeris Resource Table*

t) t)
ty too
tnl tn2

¥Ryttt st <t

BELLCOMM, INC. 3-6

for each task. At the beginning of the scheduling process,
all of these tables are empty since no commitments have been
made. Subsequently, whenever a task is scheduled, an entry

is made in the appropriate tables to reflect the commitment
of each resource to the task for the amount of time specified
in the Task Requirement Time Diagram (Figure 2.2). Therefore,
at any point in the scheduling process, the commitment tables
contain an up-to-date history of the resource allocations.

All resources can be classified as either binary
or analog. A binary resource has only two- possible states:
committed or uncommitted. Therefore, when a binary resource
is allocated to an activity or task for a specified time
interval, it is considered unavailable for any other assign-
ment over that interval.* Examples of binary resources
include crewmen, pieces of equipment, or (the occupancy of)
a scientific airlock. The configuration of a binary resource
commitment table is shown in Table 3.2a. In the table, the
‘resource is shown committed to Task #1 over the interval
tll - t12’ to Task #2 over the interval t21 - t22, etc.

In contrast to a binary resource, requirements
on an analog resource (e.g., power, oxygen, water, etc.) are
specified quantitatively. An analog resource may therefore
be simultaneously allocated to any number of tasks as long
as the sum of all the allocations does not exceed the speci-
fied maximum. For example, assume that a particular power
source can deliver a maximum of 1000 watts. Then, the only
limitation on the usage of that power source is the 1000 watt
maximum. Any number of tasks may use the power source
simultaneously so long as the total power consumption does
not exceed 1000 watts. The configuration of an analog
resource commitment table is shown in Table 3.2b. The table
records the total allocation of the resource over a specified

interval; hence, Ry, represents the total commitment over the

interval tll - t21, R22 the total over the interval t21 - t31’

etc.

*An ephemeris resource is a type of binary resource since
it has only two states: available and unavailable. However,
ephemeris resources are excepted from the single allocation
rule. Thus, an ephemeris resource can be allocated to any
number of tasks over the same period of availability.

BELLCOMM, INC. 3-7

Table 3.2 Commitment Table Configuration#*

Column #1 Column #2 Column #3
a. Binary Resource Table**
‘ tll t12 Task #1
. t2l t22 Task #2
| .
tnl tn2 Task #n
b. Analog Resource Tablet
£ Ry
£y Ry2
tn-1)1 R(n-1)2
tnl 0

*tij are values of mission elapsed time.

d v 4 < <+ - <
F11°F125%05 - e SE <ty

'f'tll<t21<. . <t(n-l) l<tnl'

BELLCOMM, INC. 3-8

All of the resource commitment tables are printed
out at the completion of the schedule, and on option, at
regular intervals during the scheduling process. Also on
option, the complete set of resource tables will be written
onto the History Tape at each priority level. Each of the n
sets of records on the tape will therefore contain all of the
information necessary to define the status of the resource
timelines at a particular point in the scheduling process.

The History Tape has two uses: to serve as an
input to the Data Processor and to serve as an input to the
Schedule Generator itself on a subsequent run. The second
use enables the user to initialize all of the resource tables
to their original status at some intermediate priority (i)
by reading in the appropriate set of records from the History
Tape. The scheduling process would then begin with the tasks
having a priority of i+l. This option enables the user to
modify an existing schedule as well as to generate a completely
new one. The option is particularly important because it
can be used to conduct economical (in computer time and
charges) investigations of variations in a basically desirable
schedule.

3.3 The Data Processor

The ATS Data Processor is used to graphically
display the timeline data produced by the Schedule Generator.
The program has two sources of input data: punched cards and
the History Tape. The card data contains program control
instructions, the names of the variables to be plotted, and
the manner and the scale to which they are to be plotted.
Timeline data is obtained directly from the History Tape.

The output of the Data Processor is a magnetic
tape which contains specific instructions for the Stromberg-
Carlson SC-4020 plotter. The latter generates graphs by
photographing the sequential displays of a cathode-ray tube.
Hence, the graphical information must be generated frame-by-
frame.

The current version of the Data Processor can
generate two types of plots: "coaxial" and "periodic"
The coaxial plots can display up to five variables on a
single set of axes. The variables may be analog resources,
binary resources, ephemeris resources, task performances,
or any combination of these. Two examples of coaxial plots
are shown in Figure 3.2. In both plots, the abscissa
represents MET measured from the SL-2 insertion on a Skylab
mission. Figure 3.2a shows a portion of the timelines
for three crewmen. The data, taken directly from the binary

39

COAXIAL PLOTS OF CREW TIMELINES

lllll

llllll

llllll

lllll

[[[[[

uuuuu

!!!!!!

!!!!!

EEEEE

IIIIII

llllll

AAAAAA

llllll

IIIII

SSSSS

.......

AAAA

TIME -DAYS

FIGURE 3.2a

LUNCHA POWER DAY

CREWA

3-10

COAXIAL PLOTS OF CREWA,LUNCHA,POWER,AND S/C DAY

[
J |

“®oma

———————eed]
mm

————

msw

AP »uwEx

@9 =0e

> we OoR

»xTnzCPr

TIME -DAYS

FIGURE 3.2b

BELLCOMM, INC. 3-11

commitment tables for each crewman, shows the specific task
associated with each interval of committed time. Figure 3.2b
illustrates the different types of data that can be plotted
on one coaxial plot: CREWA is again the graphical repre-
sentation of the crew timeline for Crewman CREWA, LUNCHA shows
the occurrences of the Task LUNCHA (the lunch period for
Crewman CREWA), POWER is an analog resource representing the
total electrical power required by the scheduled activities,
and DAY, an ephemeris resource, shows the times that the
spacecraft is within line-of-sight of the sun.

The periodic plots provide the capability to
overlay data from resource commitment tables, ephemeris
commitment tables, and task performance times in order to
observe recurring patterns and the interrelationships between
the different variables. On the periodic plots, the occurrences
can be plotted as shaded boxes or as points (the point repre-
senting the midpoint of the occurrence). A portion of a
periodic plot is shown in Figure 3.3. Figure 3.3a shows
the plot legend, printed at the beginning of every plot.
Figure 3.3b shows the plot itself. The symbol for DAY
represents the times the spacecraft is in sunlight while
the symbols for REST and LUNCHA represent performances of
tasks by the same name.

312

AND LUNCHA

REST,

PERIODIC PLOTS OF S/C DAY,

*107d 2130143d ¥ HO4 ANIDH3T — BE'E€ 3HNOIL

YHINNT

1S3y

Av0O

ON3937

3-13

*107d J1G01H3d V¥ 40 NOILHOd — 9€°€ 3HNOIL

i
m mm m — HH m — 00°9
88 m

Tl

: =

EEEEE SEEET SEEEEI
EEEEEEEEEEEESEBE »
mm SEEESEEEEREEE | -
m =EEIEEEE S EEEEE
*EEIEEEELE EELEE R

S - 3IWIL

BELLCOMM, INC.

4.0 The ATS Task Description Language

4.1 Language Structure

An input language was developed for the ATS to
translate task requirements and performance constraints
into statements that could be used by the ATS programs.*
The primary requirement of the input language is that it
have sufficient capability to interpret all task speci-
fications, despite the fact that the nature of these
specifications may vary markedly from task to task. To
provide this flexibility, the language structure contains
a common base within which all task specifications must
be described. The common base is composed of the seven
descriptors defined in Table 4.1. Resource requirements
and performance constraints for all tasks must be trans-
lated by the user into three or more statements using
these descriptors. The descriptors will be discussed more
fully in Section 4.2.

4.2 Card Formats

The current version of the Task Description
Language (TDL) consists of the 12 card formats shown in
Table 4.2. The formats are divided into three groups:

l. Descriptor Cards which are used to
specify a task's performance objectives,
resource requirements, and performance
restrictions.

2. Annotation Cards which are used to
annotate the Descriptor Cards with
any alphanumeric information desired
by the user. (The Annotation Cards
are available as a convenience and
do not affect the scheduling of the
task in any way.)

*The Task Description Language is used by both the
Data Bank Generator and the Schedule Generator. Usage
rules apply to both programs.

BELLCOMM, INC. 4-2

Table 4.1

TASK DESCRIPTORS

Descriptor Purpose
PRIORITY Specifies when, relative to all other

tasks, this task will be considered
for scheduling.

OBJECTIVE Specifies the number of task performances
and the spacing between performances.

TIME Specifies the permissible intervals of
MET during which the task may be ini-
tiated.

ENABLE Specifies the permissible interval,

relative to the start-time of another
task, during which the task may be
initiated.

INHIBIT Specifies the interval, relative to
the start-time of another task, during
which the task may not be initiated.

AMOUNT Specifies the total amount of a
consumable required for one performance
of the task.

RESOURCE Specifies the time interval, relative
to the start-time of the task during
which the resource is required.

4-3

‘WIN:HH:dQ 1VYIWHO4d
TVHINID IHL NI STLNNIW ANV ‘SHNOH ‘SAVA 40 SINTVA HIDILNI NI 3SSIHIXI IUVY ‘2 AGA3ILONIA ‘IWIL 30 SANTVA 11V»

| 1SV1 Qyv9 ISV
“ 313730 / NSVl ayvd 313134
JWVNL “ ‘AIND3 / NSVL Qyv2 I9NITVAIND3
== S SAHVI NOILONYLSNI
" A ‘INWWOD / MSVi ayvo LNIWWOD
_) ‘JTLIL / NSVL aQyvd 31111
_
_ SQHVI NOILYLONNY
4 & 4 “ ‘JNVYNY ‘s34 / NSVL «QHV2 304N0sS3Y
<y by | ‘3wwnL ‘AIHNI / ISVL *AHVD LIGIHNI
_
) 4 by | ‘IWYNL ‘378VN3 / NSVl +a4Vv9d 37aVN3
v _l ‘JWYNH LNNOWY / MSVL ayvo INNOWY
..... 1 < 12! “ ‘JNIL / NSVYL «QHVD INIL
1oy %%, ‘443dd ‘D4H3IJN | ‘03rdO / NSVL «@HVD 3AILO3rE0
3 “ ‘Iud / MSVL Qyvd ALIHOIH
“ SQYVD HOL1dI42S3a
9 g v € _ z L
I
§a13id viva | Sa713i4 ¥3131IN3q] JWVN aavD

SAHVI NOILdIHOS3A MSVYLSLV Z'¥ 319Vl

BELLCOMM, INC. 4-4

3. Instruction Cards which are used to
provide specific instructions to the
program on the processing of the task
descriptions.

Each card (except the Last Card) has two sets of
fields: identifier fields and data fields. The first
identifier field on each card identifies the name of the
task. The latter may be any combination of letters and
numbers up to a maximum of six characters. The first
character, however, must be a letter. The second field on
each card identifies the card type which in turn determines
how the information on the card is to be processed. The 12
card types shown in Table 4.2 are the only types permitted
in the present version of the TDL and the type designation
must appear on the punched cards exactly as shown. The
remaining identifier and data fields are unique to the
particular card type and will be discussed below.

4,2.1 Descriptor Cards

Each set of task Descriptor Cards must contain
one Priority Card and one Objective Card. The remainder of
the set can be made up of any desired combination (gquantity
and type) of the remaining five card types.

The card formats are structurally similar. Each
card may be submitted in free format (i.e., independent of
position). Blank columns will be ignored. However, the fields
must appear in the order specified and a delimiter must be
used between successive fields. The delimiter may be either
a slash (/) or a comma. If all of the information is included
on one card, no delimiter should be placed after the last field
on the card. However, if more than one card is needed, then a
comma should be placed after the last field on the card and the
information continued on another card. Note that these supple-
mentary cards must then appear in the data deck together and
in the proper sequence.

4.2.1.1 Priority Card

The third field of the Priority Card contains an
integer k, the numerical priority assigned the task (k:z1l).
During the generation of the schedule, the tasks are considered
for scheduling in order of their numerical priority (e.g.,
the first task considered has a priority of one). If two or
more tasks have the same numerical priority, they will be
considered for scheduling in the order in which they were
input to the program.

BELLCOMM, INC. 4-5

4.2.1.2 Objective Card

The task's repetition requirements are specified
on fields 3 through 6 of the Objective Card. 1In Field 3,
variable NPERFQ is an integer defining the minimum number
of required task performances (NPERFQ:1l). If this minimum
cannot be scheduled, then no performance of the task is
scheduled. 1In Field 4, variable DPERF is an integer defining
the maximum desired number of task performances (DPERF>NPERFQ) .
The Schedule Generator will schedule as many performances as
possible between the specified minimum and maximum. TIf only
one performance of a task is desired, then both NPERFQ and
DPERF should be set equal to one. Note that the maximum value
of DPERF is limited by the first dimension of an internal working
array (Array LVWIN) in the Schedule Generator. In the current
version of the ATS, the array is dimensioned (60,3). Thus,
DPERF cannot be greater than 690.

Fields 5 and 6 need only be specified for multi-
performance tasks (DPERFx>1). The variable tbet in Field 5

specifies the nominal time interval between successive
performances while ttol in Field 6 specifies the tolerance

on that nominal value. As an alternative, the user may
designate tbet as the minimum time between successive

performances by specifying the letters MIN in Field 6.
When Fields 5 and 6 are not supplied, the performances will
be scheduled without regard to the spacing between repetitions.

4.2.1.3 Time Card

Unless otherwise specified, the Schedule Generator
assumes that the task may be initiated at any time over the
mission duration where the resource requirements and performance
constraints are satisfied. The Time Card permits the user a
degree of control over the scheduling of a task by defining
specific intervals of mission elapsed time as acceptable start-
times. These continuous intervals are considered as additional
restrictions on the performance of a task when deriving
acceptable task start-time windows and so, by the process
described in Section 2.3, the task start-time will always
be defined within the specified interval. Note that the
Time Card can be used to insert a task performance at any
particular value of MET by setting both endpoints of the
interval to that value. The performance will be scheduled
at that point provided all requirements and performance
constraints can be satisfied.

BELLCOMM, INC. 4-6

For the Time Card shown in Table 4.2, the values
of tl and t2 in Fields 3 and 4 represent the lower and

upper endpoints respectively of the acceptable interval
(tzatl). The endpoints are values of mission elapsed time

and must always be specified in the order shown. As indi-
cated by the dots, any number of intervals may be specified

on one card (or its continuation). For example, the values of
t3 and tyo representing endpoints of a second acceptable inter-

val (t4zt3), could be added to the card in Fields 5 and 6, etc.

The endpoints must be specified in pairs with one exception:
the second endpoint of the last interval on the card may be
omitted leaving the interval open-ended. In this case, the
Schedule Generator assumes the interval ends at the end of
the mission.

4.2.1.4 Amount Card

The Amount Card is used to specify that a quantity A
of consumable RNAME is required for each performance of the
task. A given quantity of each consumable is allocated for
the mission. When each task is scheduled, this total is
diminished by an amount equal to the product of guantity A
and the number of performances scheduled. Therefore, at any
point in the scheduling process the amount of the consumable
still uncommitted is known. When a task is considered for
scheduling, the maximum number of performances permitted will
be limited to the number that would require no more of the
consumable than is currently available. If that number is
less than the required minimum (variable NPERFQ on the
Objective Card) the task is not scheduled.

4,2.1.5 Enable Card

The Enable Card specifies intervals of acceptable
task start-times relative to the start-time of another task.
The latter, considered the independent task, is identified
in Field 3 while the task to which the constraint applies
(i.e., the task in Field 1) is designated the dependent task.
Implicit in the specification of an ENABLE constraint is that
performances of the independent task have already been
scheduled. If no performances have been scheduled, the ENABLE
constraint cannot be satisfied and the dependent task is
not scheduled. The values ty and t, in Fields 4 and 5 are

the endpoints of an acceptable start-time interval relative
to the start~time of each performance of the independent
task. The values of tl and t2 may be positive or negative

BELLCOMM, INC. 4-7

As indicated by the dots, the Enable Card also
permits any number of intervals to be specified on one
card (or its continuation). As with the Time Card, the
endpoints must be specified in pairs with the exception of
the last interval. The second endpoint of the last inter-
val may be omitted, leaving the interval open-ended, in
which case the Schedule Generator assumes tne interval ends
at the end of the mission.

As mentioned above, all intervals defined on the
Enable Card apply to every performance of the independent
task; i.e., the acceptable start-time windows are defined
relative to every performance of the independent task.
However, the user may designate that the intervals on the
card are to apply only to the latest scheduled performance
of the independent task by inserting the symbols (LAST)
before the name of the independent task in Field 3. 1In this
case the card becomes

TASK/ENABLE, (LAST) TNAME, t t

1’7 -2

Note that all independent tasks must be considered
for scheduling before the dependent task is considered. If
the dependent task is considered before any of the independent

tasks, the run will terminate with an error message (Appen-
dix A - Section A.2.3.3).

4.2.1.6 The Inhibit Card

The function of the Inhibit Card is the inverse
of the function of the Enable Card; the Inhibit Card speci-
fies an unacceptable start-time interval relative to the
start-time of another task. As in Section 4.2.1.5, the name
of the independent task appears in Field 3 and the values
tl and t, in Fields 4 and 5 represent values of time relative

to the start-time of each performance of the independent
task. However, these values now represent the endpoints
of an interval in which no performance of the dependent task
can be initiated. As above, the values of tl and t2 may be

2>t1.

positive or negative so long as t
The interval defined on an Inhibit Card applies

to every performance of the independent task without excep-

tion. In contrast to the Enable Card, only one interval can

BELLCOMM, INC. 4-8

be specified on an Inhibit Card and both endpoints of this
interval must be defined. 1In addition, all independent tasks
must be considered for scheduling before the dependent task
is considered. If the tasks were considered in reverse order
(dependent task before the independent task), it would be
possible to schedule both tasks in violation of the inhibit
requirement. Therefore, if the dependent task should be
considered before any of the designated independent tasks,
the run will terminate with an error message (Appendix A -
Section A.2.3.3).

4,2.1.7 The Resource Card

The Resource Card is used to state a requirement
that a given resource be available for a specified interval
relative to the start-time of the task. A separate card
must be used for each requirement and only one pair of end-
points (i.e., one continuous interval) may be specified on a
card. As shown in Table 4.2, the name of the resource is
specified in Field 3 and the endpoints of the required inter-
val in Fields 4 and 5. The values of ty and t, represent the

earliest and latest requirement times and, as shown in
Figure 2.2, may be either positive or negative depending upon
their position relative to the start-time of the task.

The Resource Card may be used to specify requirements
on any type of resource (e.g., binary, analog, or ephemeris).
For the binary and ephemeris resources, specification of the
endpoints ty and t, is sufficient and Field 6 is left blank.

For an analog resource however, Field 6 must contain a number
indicating the gquantity of the resource required over the
interval. The units of this number should be the same as the
units in which the maximum permissible value was specified.

The name of the resource specified in Field 3 must
be identical to the name of the corresponding resource table
stored in the program. These names may be any combination of
letters and numbers up to a maximum of six, however, the first
and last characters of the name must be a letter. There are
three exceptions to the rule that the name in Field 3 be
identical to the resource table name. They are described below.

4.2.1.7.1 Designation of Multiple Requirements
on the Same Resource

The first exception is designed to provide for cases
in which there is more than one requirement on the same
resource in the same task description. If, for example,

o~ s 5 “ s cr i b Ao e A S L£L o ma o am b
s B and C in Figure 2.2 represent t aifrerent

BELLCOMM, INC. 4-9

power levels on the same resource, POWER, then a number
would be affixed to each resource name in Field 3 to
distinguish between the two requirements.* The Resource
Cards for these two requirements would then become
Requirement B TASK/RES, POWER1, t

t R

1" 2" 7B

Requirement C TASK/RES, POWER?2, t t R

i’ 2" °C
During the execution of the program, the final numeral is
ignored and the resource is identified by its table name,
POWER. Note therefore that resources for which multiple
requirements are defined must be assigned a name containing
no more than five characters so that the identifying numeral
may be affixed where necessary.

4.2.1.7.2 Crewman Designation

The second exception to the name rule is designed
to enable the user to specify participation of a crewman
other than by name. On option, a specific skill may be
assigned to any or all of the crewmen.** The third identifier
field may then contain the name of a skill (any combination
of letters or numbers to a maximum of six characters so long
as the first character is a letter) rather than the name of
a specific crewman. The program will select the crewman by
the designated skill rather than by name. If neither identity
nor skill is important, the special designation ANY should be
placed in Field 3. This designation permits the Schedule
Generator to select any crewman whose availability is consis-
tent with the requirements of the task.

When the ANY designation appears in Field 3, the
crewmen are considered for selection in inverse order of total
committed time. The selection of a crewman for each window
at that requirement level is independent of selections made

*The necessity to distinguish between these two require-
ments will be explained in Section 4.4.

**The current version of the ATS permits only one skill
to be assigned to each crewman. No two crewmen may be assigned
the same skill.

BELLCOMM, INC. 4-10

for other windows at the same level. If, for example;

Requirement A in Figure 2.3 represents the requirement for

an undesignated crewman, the selectlon of a crewman for each
L]

of windows Al - Al, A2 - 2, A3 - A3 would be independent of

the selection made for the other two. The option does not
therefore permit the user any control over the selection of
the crewman.

4.2.1.7.3 Inverse Designation for Ephemeris Resources

The third exception to the name rule permits the
user to specify that the spacecraft be out of contact with
any desired ephemeris resource. For example, the ephemeris
resource table for the South Atlantic Anomaly (named SAA)
would contain the intervals during which the spacecraft is
in contact with the SAA. If the task must be performed
outside the SAA, the third field of the Resource Card should
contain the designation (NOT)SAA. The Resource Card for
that option would become

TASK/RES, (NOT)SAA, tl' t2

4.2.2 Annotation Cards

The Annotation Cards are designed to permit the
user to annotate the task description cards with alphanumeric
information. There are two types of cards, Title Cards and
Comment Cards; both are used in an identical manner. The
number of each type used is entirely optional with one excep-
tion; each task must be introduced by a Title Card. The cards
of each type must be numbered consecutively. This number
appears in the third field of the card (shown as k in Table
4.2) and is always followed by a blank space. All information
appearing on the card after the blank space is interpreted
as alphanumeric information. As such, it is not processed
by the Schedule Generator Input Section but is stored exactly
as it appears on the card.

4,2.3 Instruction Cards

The three instruction cards shown in Table 4.2 are
used to issue specific instructions to the programs. They
are never used as part of a set of task specifications.

4.2.3.1 The Equivalence Card

The Equivalence Card permits the user to duplicate
scription already in storage. It provides a conve-
ernative to introducing a second set of task

BELLCOMM, INC. 4-11

description cards that are virtually identical to a set
already in storage. When encountering an Equivalence Card,

the program duplicates all of the Descriptor and Annotation
Cards for the task named in Field 3 and associates the

duplicate set with the new task named in Field 1. After this
card is processed, there will be two separate, distinct, and
identical sets of cards in storage. The duplicate set should
then be modified (Section 4.5) to obtain the exact description
required for the new task. Note that further modifications

to either set of cards will not affect the other set.

4.2.3.2 The Delete Card

The Delete Card is used to delete the task named
in Field 1 from the permanent data bank. All Descriptor and
Annotation Cards pertaining to the task are deleted. This
card is only used as an input to the Data Bank Generator.

4.2.3.3 The Last Card

The Last Card has the word LAST in the first
identifier field (Field 1). No other fields appear on the
card. The card is placed after the last Descriptor or Annota-
tion Card in the data deck to indicate to the program that all
of the task definitions and modifications have been specified.

4.3 Generating a New Task Description

There are two methods of entering task descriptions
into an ATS program: inputting the entire set of Annotation
and Descriptor Cards that define the task or using an Equiva-
lence Card to duplicate the description of a task already stored.

4.3.1 Translation of Task Specifications
Into a Set of Task Description Cards

When a new set of cards is used to define a task,
the following rules governing the input sequence must be
observed:

1. A Title Card must be used to introduce the
name of the new task. Therefore, the first
Title Card must be input before any other
card in the set.

2. The Priority and Objective Cards must be
input (in that order) before any other
Descriptor Cards.

BELLCOMM, INC. 4-12

3. The remaining Descriptor Cards may be
placed in any desired order. They will
be stored in the same order they are
input.

These rules are demonstrated in the Task Description Cards
for two illustrative tasks named Sleep and Breakfast shown in
Figures 4.la and 4.1lb, respectively. The cards in each set
are shown in the order in which they would be input.

A more sophisticated illustration of the translation
of task requirements and performance constraints into the
required card formats is obtained from examining Task M093,
Vectorcardiogram, one of the in-flight experiments to be
performed in the Skylab Program. The task is designed

"to measure electrocardiographic
potentials of each astronaut during

the weightless period and the immediate
post-flight period by methods that will
allow precise quantitative measurement

of the changes that occur. The experi-
ment is conducted on each crewman every
third day during the mission by obtaining
vectorcardiogram measurements at rest and
while exercising on an ergometer."*

The measurements are made by attaching electrodes to different
parts of the subject's body. The output signals from these
electrodes are processed by an auxiliary piece of electronic
equipment (the Experiment Support System or ESS) and recorded
for future transmission to earth.

The characteristics of Task M093 that are significant
to scheduling are shown in Figure 4.2. The Task Timeline
Diagram for one performance of the task is derived from this
data and is shown in Figure 4.3. Finally, Figure 4.4 shows
the set of Task Description Cards for one performance of MO93A
(M093 for one subject designated Crewman A) derived from the
Task Timeline Diagram and the operational constraints given
in Figure 4.2.

*Reference 3.

BeELLCOMM, INC. 4-13

Figure 4.la

Task Description Cards for the Sleep Task

SLEEP/TITLE, 1 TASK SLEEP

SLEEP/COMMNT, 1 ALL CREWMEN SLEEP SIMULTANEOUSLY FOR ONE
SLEEP/COMMNT, 2 CONTINUOUS 8-HOUR PERIOD EVERY 24 HOURS.
SLEEP/COMMNT, 3 THE FIRST PERIOD SHOULD NOT BEGIN PRIOR
SLEEP/COMMNT, 4 TO 00:09:25 MISSION ELAPSED TIME.
SLEEP/PRI, 1

SLEEP/OBJEC, 27, 27, 01:00:00, 00:00:00

SLEEP/TIME, 00:09:25

SLEEP/RES, CREWA, 00:00:00, 00:08:00

SLEEP/RES, CREWB, 00:00:00, 00:08:00

SLEEP/RES, CREWC, 00:00:00, 00:08:00

Figure 4.1b

Task Description Cards for the Breakfast Task

BREAK/TITLE, 1 TASK BREAK

BREAK/COMMNT, 1 CREWMEN EAT BREAKFAST TOGETHER IMMEDIATELY AFTER
BREAK/COMMNT, 2 AWAKENING FROM SLEEP, ONE HOUR AND 30 MINUTES
BREAK/COMMNT, 3 ARE ALLOTTED FOR BREAKFAST.

BREAK/PRI, 2

BREAK/OBJEC, 27, 27, 01:00:00, 00:00:00

BREAK/ENABLE, SLEEP, 00:08:00, 00:08:00

BREAK/RES, CREWA, 00:00:00, 00:01:30

BREAK/RES, CREWB, 00:00:00, 00:01:30

BREAK/RES, CREWC, 00:00:00, 00:01:30

4-14

(TETW ‘TLIW ‘Z60W) HSIOWHAXA HJAAAS A0 YNOH Z/T NIHLIM FONYWIOJIIHd ON
TVHW ¥V ddLdVY SYNOH € NIHLIM HONYWIOJAdHAd ON
SLNIVILSNOD TYNOILVIHEdO

*NOILYdIDILYVYd
S NIWMIIO FHL 40 HLOANIW LSTZ ANY 0 FHL ONIN¥AA dIWIOJYAd SI dASIDIHAXH
HHL "HHLIWODYH HHI NO HSIDYIXHT FAILNNIW OML FHIL d04 SLLVYM ST TYNOILIAAY

SHLANIW ¢€ LSYTJd HHIL d0d SLLVM 0T
SINAWTIIN0TI dIMOd
(TETW ‘TLIW ‘Z60W X QISN OSTV) WALSAS ILI0ddNS INIWINAIXH

(FINSSTId IAILVODIN AAod
dHMOT LHDITA-NI - C60W MSVY.IL Ad dISN O0S1IY) LSIA WYIDOTIAIVOIOLIOIA

(RLIAILOV DITOEVIAW - TLTW MSVYL X9 dISN OSTV) YALIWODIE FTOADIL
SLNAWTITNOTY ILNAWIINOH
SAIANIW 6€ - 0 JAAIISHO
SHLOANIN 6€ - 0 LOALdNs
SINAWIY INOTI MHID
*IHOITA NI AVA QUYIHI AMIAT FONO NYWMHID HOVA NO HONVWIOAWHd ANO - HAAILOALIO
NOILJI¥OSHA MSV.L

WYEOOTAYYOYOLOHA — €60W MSYL 40 SOILSTHIIOVIVHO ONITNAIHOS

2°py oanbrd

"'NYWMIHD INO NO 3ONVINHO4HId INO HOd WVHOVIA INITINIL
WYHDO0IAGHVYIHOLIIA €60 LNIWIHIIX3 GVIANS — €'Y JHNOIL

<—— (SILNNIN) JWIL 3AILVI3Y

4-15

6€

ce

—— — — —

¢c 0T

_

JWIL-1HVIS MSVL

1

|
_
|
_
|
|
|
|
|
|
_
|
|
|
|
_
_
_
|
L

S1LVMOL = HIMOd TV101

S11VM SZ = H3IMOd TV10l

SLLIVMOL = H3IMOd TV1O0L

H3IAHIASHO

123rans

BELLCOMM, INC. 4-16

Figure 4.4

Task Description Cards for M093A

MO93A/TITLE, TASK M093 - VECTORCARDIOGRAM
MO093A/COMMNT, M093A DENOTES SUBJECT IS CREWMAN A.
MO93A/COMMNT, TASKS M131 AND M171 EACH HAVE 3 MODES. THE

FIRST LETTER FOLLOWING THE BASIC TASK NAME DENOTES

M093A/COMMNT, THE MODE. THE SECOND LETTER DENOTES THE
M093A/COMMNT, PRINCIPAL SUBJECT.

MO93A/PRI, 0

M093A/0BJEC, r 9, 03:00:00, 00:08:00
MO93A/RES, CREWA, 00:00:00, 00:00:39
M093A/INHIB, BREAK, 00:01:30, 00:04:30
M093A/INHIB, DINNER, 00:01:15, 00:04:15
MO93A/INHIB, LUNCHA, 00:01:15, 00:04:15
M093A/INHIB, M131aAaA, 00:00:55, 00:01:55
MO93A/INHIB, M131BA, 00:00:40, 00:01:40
MO93A/INHIB, Mi31lca, 00:00:40, 00:01:40
MO93A/INHIB, M092a, 00:01:16, 00:02:16
M093A/INHIB, M171aa, 00:01:30, 00:02:30
MOS3A/INHIB, M171BA, 00:01:25, 00:02:25
MO93A/INHIB, M171ca, 00:02:00, 00:03:00
MO93A/RES, POWER1, 00:00:00, 00:00:20, 10
MO93A/RES, POWER2, 00:00:20, 00:00:22, 25
MO93A/RES, POWER3, 00:00:22, 00:00:32, 10
MO93A/RES, ANY, 00:00:00, 00:00:39

1
1
2
MO93A/COMMNT, 3
4
5
2
9

BELLCOMM, INC. 4-17

As indicated on the Comment Cards, every
version of a task must be defined as a separate task.
Thus, M093 becomes three tasks: M093A, M093B, and
M093C which require crewmen A, B, and C respectively
as the principal subject. The task descriptions for
M093B and M093C would be virtually identical to M093a
except that the third identifier field of the appro-
priate Resource and Inhibit Cards would be changed to
reflect the proper subject.

In order to properly specify the operational
restrictions on the task performance, the user must
understand the meaning of the restriction and how it
applies to each of the related tasks. For example, the
restriction on the performance of M093A within three
hours after the completion of a meal translates into
inhibit restrictions on each of the subject's three
meals: breakfast, lunch, and dinner. Since it was
assumed that the crewmen would eat breakfast and dinner
together, an inhibit restriction was specified for
tasks BREAK and DINNER. It was further assumed that
each crewman's lunch period would be scheduled separately.
Since the performance restriction applies only to the
subject's lunch period, the Inhibit Card specifies a
restriction on task LUNCHA.

As discussed in Section 4.2.1.6, the data
fields on each Inhibit Card contain the endpoints of
the inhibited interval relative to the start-time of
the independent task. Hence a knowledge of the time
of the subject's final participation in the independent
task relative to its start-time is required if the data
fields on the Inhibit Card are to be specified correctly.
For example, Figure 4.1b shows that crewman A's partici-
pation in the breakfast task ends at one hour and thirty
minutes after the start of the task. Hence, the inhibited
interval on the start-time of M093A relative to the start-
time of the breakfast task begins at the end of this
participation (00:01:30) and ends three hours later
(00:04:30). All endpoints for enable and inhibit restric-
tions are similarly derived.

Finally, note that neither the M093 Timeline
Diagram nor the M093 Task Description Cards make any
reference to the three pieces of egquipment specified in
Figure 4.2. As noted in the figure, the equipment is
only shared with tasks which cannot be performed at the
same time as M093. Since there is no potential conflict,
no Resource Cards for the equipment need be specified.

BELLCOMM, INC. 4-18

4.3.2 Use of an Equivalence Card

When an Equivalence Card is used to duplicate a
task description, that card must be used to introduce the
name of the new task. Any cards used to modify the dupli-
cated description must appear after the Equivalence Card.
The rules for modifying an existing task description are
presented in Section 4.4.

4.4 Modifying a Task Description

The primary reason for establishing a data bank
is to relieve the user of having to input all of the task
descriptions to the Schedule Generator from punched cards
every time the program is used. If a bank is to be estab-
lished and used, the requirement to modify the task
description data is twofold.

1. The capability is needed in the Data
Bank Generator to edit the descriptions
stored in the bank, thus enabling the
user to easily incorporate permanent
modifications to the task descriptions.

2. The capability is needed in the
Scheduling Generator to permit the
user to alter the task descriptions
copied from the data bank. This
capability enables the user to create
unique task descriptions for the
duration of the scheduling process
without changing the descriptions
stored in the data bank.

The TDL permits three types of edits: additions,
deletions, and changes. Edits are performed card by card
using the Descriptor and Annotation Cards described above.
The first identifier field on the edit card contains the
name of the task to be edited. The program scans all of the
cards in the appropriate card group (Descriptor or Annotation)
for that task until a card is found whose identifier fields
exactly match the corresponding identifier fields on the
edit card. When a match is found, the data fields on the
stored card are deleted and replaced with the data fields
on the edit card. If, however, the word DELETE appears in

BELLCOMM, INC. 4-19

the first data field, the entire card is deleted.* If no
match is found, the edit card is added to the end of the
appropriate card group.

This editing procedure requires that each card
in a set of task description cards contain a unique set of
identifiers. When more than one requirement is specified
on the same resource in the same task description (Section
4.2.1.7.1), a different number must be affixed to the
resource name in each requirement to maintain that unique-~
ness and thus permit the editing logic to differentiate
between the two requirements.

4.5 The Description Card Data Deck

A particularly important feature of the Task
Description Language is that it permits edit cards and
description cards for new tasks to be interleaved when
forming a data deck, so long as the relative position of
the cards for each new task conforms to the input sequence
rules defined in Section 4.3. This flexibility is achieved
because each card is self-contained (i.e., it contains all
of the information required to identify and modify a particu-
lar task description). The only exception occurs when more
than one punched card is needed to make up a Descriptor Card.
In that case, all of the punched cards making up the type
card must be input together in the proper order.

A simple illustration of this flexibility is
shown in Figure 4.5. Figures 4.la and b show sets of
description cards for the Sleep and Breakfast tasks in
the order in which they would be input to the program.
An alternative input sequence for each set of cards is
shown in Figures 4.5a and b respectively. Though more
difficult for the user to read, these alternatives are
consistent with the four input sequence rules defined in
Section 4.3. TIf these alternatives were used, the respec-
tive task descriptions would actually be stored in the
sequence shown in Figure 4.1.

*Annotation Cards have no delimiter after the sequence
number in the third identifier field. When the DELETE
option is used, however, a comma should be placed in the

word DELETE placed in the next field.

BELLCOMM, INC.

Figure 4.5a

Alternative Input Sequence for the Sleep Task

SLEEP/TITLE,
SLEEP /PRI,
SLEEP/COMMNT,
SLEEP/COMMNT,
SLEEP/OBJEC,
SLEEP/TIME,
SLEEP/COMMNT,
SLEEP/RES,
SLEEP/COMMNT,
SLEEP/RES,
SLEEP/RES,

1
1
1
2

27, 217,
00:09:25
3

CREWA,

4

CREWB,
CREWC,

TASK SLEEP
ALL CREWMEN SLEEP SIMULTANEOUSLY FOR ONE
CONTINUOUS 8-HOUR PERIOD EVERY 24 HOURS.

01:00:00, 00:00:00

THE FIRST PERIOD SHOULD NOT BEGIN PRIOR

00:00:00, 00:08:00

TO 00:09:25 MISSION ELAPSED TIME.
00:00:00, 00:08:00
00:00:00, 00:08:00

Figure 4.5b

Alternative Input Sequence for the Breakfast Task

BREAK/TITLE,
BREAK/COMMNT,
BREAK/PRI,
BREAK/COMMNT,
BREAK/OBJEC,
BREAK/ENABLE,
BREAK/RES,
BREAK/COMMNT,
BREAK/RES,
BREAK/RES,

1

1

2

2

27, 27,
SLEEP,
CREWA,
3

CREWB,
CREWC,

TASK BREAK
CREWMEN EAT BREAKFAST TOGETHER IMMEDIATELY AFTER

AWAKENING FROM SLEEP. ONE HOUR AND 30 MINUTES

01:00:00, 00:00:00
00:08:00, 00:08:00
00:00:00, 00:01:30
ARE ALLOTTED FOR BREAKFAST.
00:00:00, 00:01:30
00:00:00, 00:01:30

BELLCOMM, INC. 1-21

More practical use of this flexibility is shown
in Figures 4.6 through 4.8. Figure 4.6 shows a data deck
that would be used to edit the three task descriptions shown
in Figures 4.1 and 4.4. The first two cards in Figure 4.6
edit the original set of description cards for Task Sleep
(Figure 4.la) by substituting the two cards in the edit deck
for the corresponding cards having the same identifier fields.
The set of cards describing the Task Breakfast (Figure 4.1b)
is similarly edited by substituting the Priority Card in
the edit deck for the one stored in the original task
description. Finally, the three Comment Cards for Task
MO93A are added to the set of description cards for that
task since there are no corresponding cards in the original
set (Figure 4.4) that have the same identifier fields.
The task descriptions resulting from these edits are shown
in Figures 4.7 and 4.8.

BELLCOMM, INC.

Data Deck

SLEEP /COMMNT,
SLEEP/TIME,
BREAK/PRI,
MO93A/COMMNT,
1093A/COMMNT,
109 3A/COMMNT,

LAST

Figure 4.6

to Edit Tasks Sleep, Breakfast, and MO93A

4 TO 00:10:00 MISSION ELAPSED TIME

00:10:00

4

6 THE 8-HOUR TOLERANCE SPECIFIED ON THE OBJECTIVE
7 CARD IS A WORKING VALUE AND NOT A DEFINITE

8 REQUIREMENT.

BELLCOMM, INC. 4-23

Figure 4.7a

Task Description for Task SLEEP After Editing

SLEEP/TITLE, 1 TASK SLEEP

SLEEP/COMMNT, 1 ALL CREWMEN SLEEP SIMULTANEOUSLY FOR ONE
SLEEP/COMMNT, 2 CONTINUOUS 8-HOUR PERIOD EVERY 24 HOURS.
SLEEP/COMMNT, 3 THE FIRST PERIOD SHOULD NOT BEGIN PRIOR
SLEEP/COMMNT, 4 TO 00:10:00 MISSION ELAPSED TIME.
SLEEP/PRI, 1

SLEEP/OBJEC, 27, 27, 01:00:00, 00:00:00

SLEEP/TIME, 00:10:00

SLEEP/RES, CREWA, 00:00:00, 00:08:00

SLEEP/RES, CREWB, 00:00:00, 00:08:00

SLEEP/RES, CREWC, 00:00:00, 00:08:00

Figure 4.7b

Task Description for Task BREAK After Editing

BREAK/TITLE, 1 TASK BREAK

BREAK/COMMNT, 1 CREWMEN EAT BREAKFAST TOGETHER IMMEDIATELY AFTER
BREAK/COMMNT, 2 AWAKENING FROM SLEEP. ONE HOUR AND 30 MINUTES
BREAK/COMMNT, 3 ARE ALLOTTED FOR BREAKFAST.

BREAK/PRI, 4

BREAK/OBJEC, 27, 217, 01:00:00, 00:00:00

BREAK/ENABLE, SLEEP, 00:08:00, 00:08:00

BREAK/RES, CREWA, 00:00:00, 00:01:30

BREAK/RES, CREWB, 00:00:00, 00:01:30

BREAK/RES, CREWC, 00:00:00, 00:01:30

BELLCOMM, INC. 4-24

Figure 4.8

Task Description for TASK M093A after Editing

MO093A/TITLE, 1 M093 ~ VECTORCARDIOGRAM
M093A/COMMNT, 1 MO93A DENOTES SUBJECT IS CREWMAN A.
M093A/COMMNT, 2 TASK M131 AND M171 EACH HAVE 3 MODES. THE
M093A/COMMNT, 3 FIRST LETTER FOLLOWING THE BASIC TASK NAME DENOTES
M093A/COMMNT, 4 THE MODE. THE SECOND LETTER DENOTES THE
M093A/COMMNT, 5 PRINCIPAL SUBJECT.

M093A/COMMNT, 6 THE 8-HOUR TOLERANCE SPECIFIED ON THE OBJECTIVE
M093A/COMMNT, 7 CARD IS A WORKING VALUE AND NOT A DEFINITE
M093A/COMMNT, 8 REQUIREMENT.

M093A/PRI, 20

M093A/0BJEC, 9, 9, 03:00:00, 00:08:00

M093A/RES, CREWA, 00:00:00, 00:00:39

M093A/INHIB, BREAK, 00:01:30, 00:04:30

MO93A/INHIB, DINNER, 00:01:15, 00:04:15

MO93A/INHIB, LUNCHA, 00:01:15, 00:04:15

M093A/INHIB, M131AA, 00:00:55, 00:01:55

M093A/INHIB, M131BA, 00:00:40, 00:01:40

M093A/INHIB, M131ca, 00:00:40, 00:01:40

M093A/INHIB, M092A, 00:01:16, 00:02:16

M093A/INHIB, M171AA, 00:01:30, 00:02:30

M093A/INHIB, M171BA, 00:01:25, 00:02:25

M093A/INHIB, M171CA, 00:02:00, 00:03:00

M093A/RES, POWERIL, 00:00:00, 00:00:20, 10.0
M093A/RES, POWER2, 00:00:20, 00:00:22, 25.0
M093A/RES, POWER3, 00:00:22, 00:00:32, 10.0
M093A/RES, ANY, 00:00:00, 00:00:39

BELLCOMM, INC.

5.0 The ATS Internal Data Structure

Ordinarily, A.S.A.* FORTRAN permits only static
storage allocation: i.e., core storage can only be allocated
prior to the program's execution. When writing a program
therefore, the programmer must estimate the maximum amount of
data expected for each data variable and then allocate suffi-
cient core storage to accommodate that maximum. Once the
program is in execution, the space allocated to a particular
variable (the data array) cannot be used by any other variable
even if part or all of that assigned space is not needed.
However, during the execution of the Schedule Generator
there will be wide variations in the quantity of data generated
in each of the three major data types (task descriptions,
commitment tables, and start-time windows) . Hence, the A.S.A.
FORTRAN system of static storage allocation will not provide
an efficient use of the available core storage.

A more efficient use of core storage can be achieved
with dynamic storage allocation. In this method, the dimension
of a larger linear array (called a Working Array) is defined
prior to the program's execution. Then, during execution, core
space within the Working Array can be allocated to different
variables as needed. There is no limit to the number of dif-
ferent variables to which space can be allotted or the amount
allotted to each variable. The only restriction is that the
sum total of all core space allotted to all variables be less
than (or equal to) the fixed size of the Working Array.

Two methods of dynamic allocation were used in the
ATS: dynamic array storage and linked-list storage. Dynamic
array storage was used to store the resource and ephemeris
commitment tables while linked-list storage was used to store
task descriptions and start-time windows. To further decrease
the amount of required core storage, auxiliary drum storage
was used to store all of the task descriptions. The descrip-
tions are copied into core storage from the drum when needed.
Since the Schedule Generator considers only one task at a
time, no more than one task description is ever in core storage
at any particular time.

5.1 Dynamic Array Storage

5.1.1 Characteristics of Array Storage

In dynamic array storage, the Working Array is
partitioned off into smaller areas, with each area containing
a different set of data. Within each area, data is stored in

*American Standards Association

BELLCOMM, INC. 5-2

consecutive locations (the ith data item is stored in the ith
location) and so a particular item can only be accessed by
knowing its relative position within the particular data set
(and hence within the large Working Array). A small linear
array is therefore used as a "table of contents" to the Working
Array. The small array contains the name of each data set, its
starting location in the Working Array, and the number of data
items in the set. Any data item can therefore by accessed by
searching over the portion of the Working Array defined by the
starting location and number of items for the pertinent data

set. Dynamic allocation of core storage is achieved by permitting

the number and size (number of core locations) of the partitioned
areas to vary as long as the total number of locations required
does not exceed the dimension of the Working Array.

Three advantageous features of array storage are

l. It permits rapid access time to specific
data items.

2. It facilitates searches of the data set
when the data elements are monotonically
increasing.

3. It maximizes the efficiency of data
storage by requiring only one core
location per data item.

The second of these advantages is particularly important. During
the generation of a schedule, the commitment tables will be
continually searched to find periods of resource availability.
Since the number of table searches made during the generation of
a schedule will be quite high, a significant reduction in running
time results from storing the commitment tables in an array
configuration.*

A disadvantage of array storage is the degree of
difficulty with which a data item can be inserted into a data

*The computation time required for each search is further
reduced by performing a binary rather than a sequential search
of the data in the table. As shown in Reference 4, a binary
search always requires n comparisons when the number of table

entries lies between 2n 1 and 2n. On the average, the number

of comparisons for a corresponding sequential search equals

one half the number of table entries. Hence, the saving becomes
quite significant for large tables.

BELLCOMM, INC. 5-3

set. If an item is to be inserted at the ith location in a

set containing n items, the existing items in the ith through

the nth locations must each be shifted to the next higher
location so that the data item may be inserted without destroying
any of the existing data. (The reverse process is required to
delete an item.) As the number of items in a data set increases,
the amount of data that must be shifted for each insertion also
increases and that amount soon becomes quite significant and

time consuming.

5.1.2 The Use of Dynamic Array Storage in the Schedule
Generator

In the Schedule Generator, a large one-dimension
array, the WA Array,* has been set aside to store all of the
resource tables. At the beginning of each run, all of the
ephemeris resource tables on the ATS Ephemeris Tape are read
directly into the array from magnetic tape.** Portions of
the remaining area in the array are allocated to each of the
resource commitment tables, the size of each allotment being
determined by the user. For each resource (except ephemeris
resources), the user must specify the name, type (binary or
analog), and the maximum number of entries permitted. The
allotted size is then the product of the maximum number of
entries and the number of columns required for the particular
table.

Figure 5.1 shows a portion of the WA Array at some
intermediate point in the scheduling process. A small linear
array named LTABLE is used as a table of contents to the WA
Array. Each entry contains the name of the array, the type of
array, the maximum number of entries permitted, the starting
location, and the current number of entries.

The process of making a new entry into a table is
illustrated in Figure 5.2. A search of the binary resource
table has determined that a new entry is to be inserted between
the first and second entries in the table (the three arrows
labeled A in Figure 5.1). The original data is sequentially
shifted within the allocated area to vacate the required
locations and the three data items comprising the new entry
are inserted in the vacated locations. The process may be
repeated until all of the locations within the allocated area
are occupied. Any attempt to insert more than the maximum
allowable entries in any resource table will terminate the
execution of the program with a diagnostic message (Appendix A -
Section A.2.2).

*The present size of the WA Array is 12,000 locations.

**Input of ephemeris information is optional.

54

WA ARRAY

EPHEMERIS RESOURCE
TABLE

]

tn

STARTING LOCATION

BINARY RESOURCE
TABLE

th2

TASK #1

TASK # 2

TASK #n

STARTING LOCATION

ANALOG RESOURCE
TABLE

1

m

STARTING LOCATION

FIGURE 5.1~ DYNAMIC STORAGE OF RESOURCE TABLES

WA ARRAY

BINARY
RESOURCE
TABLE

TASK #1

* TASK#i

TASK #2

.

TASK #n

STARTING LOCATION

ANALOG RESOURCE TABLE

*NEW ENTRY

1

e Ny

STARTING LOCATION

FIGURE 5.2 — INSERTING DATA INTO A RESOURCE COMMITMENT TABLE.

BELLCOMM, INC. 5-6

5.2 Linked-List Storage

5.2.1 Characteristics of Linked-List Storage

In linked-list storage, each data item is stored
together with the core address of the next logical data item.
The core address is called a pointer and the combination of
data item and core address is called a data node or link
(illustrated in Figure 5.3a). The nodes are linked together
to form a list of data items as shown in Figure 5.3b.

Since each link in the list contains a pointer to the following
link, data items can be accessed by following the pointers
rather than by depending upon a knowledge of the item's relative
position in an array. Hence, the need for physically sequential
storage is eliminated.

The list structure shown in Figure 5.3b is called
an elementary list because each link contains a single data
item (DI) in its element field. More complex lists can be
constructed by replacing any of the data items in the elementary
list with the address of another list which is considered a
sublist of the primary list. The basic structure is illustrated
in Figure 5.3c. Very complex tree-like branching lists can be
accommodated by repeated use of this simple feature.

When list structures are used, one of the first steps
in the program's execution is to form a single list of empty
data nodes (usually called the Available Space List or ASL) from
the designated Working Array. After the ASL is formed, data
lists are created or lengthened by removing data nodes as needed
from the ASL. When a data item is no longer needed, the node
containing that item is returned to the ASL, thus achieving
dynamic storage allocation. (The only limitation to the alloca-
tion of data nodes is that the total number of cells being used
at any particular moment cannot exceed the total number of cells
originally created.)

The primary advantages of linked-list storage include:

l. That wide variations in the type and
quantity of data items can be easily
accommodated.

2. That data items in a list structure
can be rearranged (e.g., added, deleted,
modified, or shifted in position) easily
by changing the appropriate pointers.

3. That it facilitates the formation of more
4+ 41

Attt Nndba A at+riistirivra her rmAar _;_ng

o o < m1
Eak X LY S B U &) B =4 ual._a D LlLuUuv LWL TOo H-Y thJ.U.IJ-

the formation of complex lists.

FHNLONYLS 1S17 Q3XNIT - €6 3HNDId

3HNLIONYLS 1817 X3ITdWOD (0

- [
W3t
viva

ve
WaLl
viva

- 1811

 'ON Z ON L 'ON

WaLl - mhww.__,_m"mm - WaLl ETT

viva viva viva
FHNLONYLS 1SI7 AHVINIWITT (9

b "ON £°ON Z°'ON L'ON

WaLl > ET R WaLl Wall

viva viva viva viva

P | SI1

NOILVHNOIINOD IAON VLivda (e

—tp—= HIINIOd

viva

BELLCOMM, INC. 5_g

Linked-1list storage does have two distinct disadvantages. As
noted above, individual data items can only be accessed by
following the pointers contained in each data node; hence,
average access time is significantly higher compared to array
storage. In addition, at least one core location at each data
node must be allocated for information related to the data
structure (e.g., the pointer address). In effect, this allo-
cation imposes an additional storage penalty (beyond the
required single core location) on each data item stored. The
use of list structures therefore is usually limited to applica-
tions where the amount of data is unpredictable and the number
of accesses will be relatively few (e.g., start-time windows and
task descriptions) .*

5.2.2 The SAC-1 List Processing System

The SAC-1 (system for Symbolic and Algebraic Calcu-
lations - Version 1) list-processing language** was selected
for use in the ATS because, unlike most other list-processing
languages, it is compatible with A.S.A. FORTRAN. This compati-
bility exists because the entire SAC-1 system, with the exception
of a few "primitive" subprograms, is written in A.S.A. FORTRAN.
The primitives are machine dependent and are usually written in
the assembly language designed for the particular computer.

5.2.2.1 The SAC-1 List Structure

Each link or cell in the SAC-1 system consists of
two sequential core locations or words. A cell is divided into
four fields: The first three fields are contained in the first
word while the element field completely occupies the second
word. The cell structure is illustrated in Figure 5.4. The
successor field always contains the pointer to the next cell
on the list while the element field may contain either a data
item or a pointer to another cell. (The pointer is stored as
the actual core address of the first word of the referenced
cell.) The type field contains the value of one or zero depending
upon whether the content of the element field is an address or
a data item. Finally, the reference count field contains an
integer indicating the number of different successor fields which
are currently pointing to the particular cell. The type and
successor fields are required to permit the formation of more
complex list structures. A complex list using the SAC-1 cell
structure is shown in Figure 5.5.

*A more complete discussion of list structures can be
found in References 5 and 6.

**References 7 and 8.

&=

59

TYPE
FIELD
(1BIT)

REFERENCE SUCCESSOR
COUNT FIELD FIELD
(17 BITS) (18 BITS)

ELEMENT FIELD
(36 BITS)

FIGURE 5.4 — SAC-1 CELL STRUCTURE.

WORD 1

WORD 2

5-10

JS W3ll vivad

0

-

0

46 W3ll viva

-

0

VS W3l vivd

-

0

ss3yaav

0 l

?

'L-OVS Ni 34N10NYLS 1817 — 9SG 3HNOId

g€ W3allviva

0 3

0

V€ W3l viva

v W3liviva

0

0

ss3yaav

¢W3llviva

)

L W3aliviva

S 1130

¥ 1130

€113

0

¢1130

3 0

L1730

LS

BELLCOMM, INC. 5-11

5.2.2.2 SAC-1 Operations

A different subroutine is used to store information
into each of the four cell fields and, correspondingly, a
different function subprogram is used to retrieve data from
each of the cell fields. The subroutines and function sub-
programs used to access each of the cell fields are listed in
Table 5.1. As the table shows, the FORTRAN statement

CALL ALTER(X,P)

will place the data stored in location X into the element field
of the cell P. Similarly the FORTRAN statement

X=FIRST (P)

will retrieve (non-destructively) the contents of the element
field of the cell P and place it in location X. In these state-
ments X is the name of a FORTRAN variable into (or from) which
the contents of the element field are to be transferred. The
entire word is transferred as is so that the bits may represent
a floating point number, an integer, or a string of Hollerith
characters.* P represents th- name of a FORTRAN integer vari-
able that contains the core address of the desired cell. The
address is always stored as an integer.

Similarly, the FORTRAN variables R, S, and T in
Table 5.1 contain data of the same form as is in the reference
count, successor, and type fields, respectively. They must be
stored in integer form. Note that the contents of T are restricted
to the values zero and 1, since the type field occupies only 1 bit.

As shown above, a particular data item can be accessed
only by specifying the core address of the cell containing that
data item, and so a FORTRAN variable must be defined which con-
tains the address of the cell. 1If, for example, the FORTRAN
variable LIST1 (Figure 5.5) contains the address of cell 1,
the first data item on the list can ke retriesved by usin

- o~ bl
o N s e Wt AT T o v b de d N VA W M_z “O-I-J.Jg il

Function FIRST. Thus, as a result of the FORTRAN statement

DI1=FIRST(LIST1)

*Since the bits are transferred intact, it becomes the
user's responsibility to keep track of the type of data in each
element field so that during retrieval, the data is transferred
to an appropriately named (integer or real) location.

BELLCOMM, INC. 5-12

Table 5.1

Subroutines and Function Subprograms

Used to Access SAC-1 Cell Fields

Store* Retrieve**
Element Field CALL ALTER(X,P) X=FIRST (P)
Reference Count Field CALL SCQOUNT(R,P) R=COUNT (P)
Successor Field CALL SSUC(s,P) S=TAIL(P)
Type Field CALL STYPE(T,P) T=TYPE (P)

_ *The data stored in variable X, R, S, or T is placed in
the appropriate field of the cell P.

is retrieved fram the appropriate field of cell P

3 R s P
in variable X, R, §, or T.

V]
-
-

BELLCOMM, INC. 5-13

FORTRAN variable DI1 contains data item 1. To access any other
data item on the list, the pointer on successive cells must be
followed until the location of the desired data item is found.
Thus, to access the data item in cell 2, we define the FORTRAN
variable POINT=TAIL(LIST1l). The variable POINT will contain
the contents of the successor field in cell 1 which is, by
definition, the location of cell 2. Then data item 2 can be
retrieved by defining the FORTRAN variable DI2=FIRST (POINT).

In a similar fashion, the data item in cell 3A can be retrieved
by successive calls to Functions FIRST and TAIL. Thus

POINT=TAIL(LIST1) POINT contains the address of cell 2
POINT=TAIL (POINT) POINT contains the address of cell 3
POINT=FIRST (POINT) POINT contains the address of cell 3A
DI3A=FIRST (POINT) DI3A contains data item 3Aa
Note that these operations have no effect on the original list
structure defined by the variable LIST1.

The accessing of the four cell fields are the lowest
level functions in the SAC-1 system and the eight subprograms
used to perform these operations are called the SAC-1 primitives.
Higher level routines, using these primitives, perform other .
list-processing functions: creating new lists, adding items to
existing lists, and erasing lists (i.e., returning all cells

on the list to the ASL).

5.2.3 Task Description Lists

All task descriptions in the ATS are stored in a
linked list structure. Each task description is stored as two
separate lists; one contains the alphanumeric information on
the Annotation Cards and the other contains the data on the
Descriptor Cards. The relationship between the input cards
and the corresponding list structure can be illustrated by
comparing the Descriptor Cards for Task Sleep in Figure 4.1la
and the internal list structure resulting from those cards
shown in Figure 5.6. Each card, with the exception of the
Priority Card, corresponds to a separate sublist. The contents
of each field on a card is stored on a separate cell. Identi-
fier fields as well as resource names are stored in their
Hollerith representation while all values of time are stored in
minutes, the common unit of time for the ATS system.

5-14

'dIITS ASVL HOJ I3UNIONYLS 1SIT — 9°G IHNDIL

00
AN
ooy 0'o8y 0°08Y oovvL
0 ﬁ 3 — 0 0 _ l _ 0 0 _ 3 _ 0 _ 13 ﬁ]
00 00 00 124
— 3 _ 0 _ 3 _] — L — 0 _ l _ 0
OM3H2, AMIHD, ~VM3IHD, 0595 124
[[B DK o o T
.S34, S3Y, S3Y, AWIL, ,123r90,
DK K [o o [o
$s3Haav $s3Haagv $s3yaav ss3yaav ss3yvaav 3 ,d3as,
1K T K C T =E C T YL]
L1730 97730 S 1130 v 1730 €71730 <7130 1717130

SVl

BELLCOMM, INC. 5-15

The input sequence rules in Section 4.3 require that
the Priority and Objective Cards be the first two Descriptor
Cards input for any task. The Priority Card is used to create
a new Descriptor List with the task name entered in cell 1 and
the task priority entered in cell 2. Thereafter, any card
containing the same name in its first identifier field directs
the program to that particular list. The information on the
Objective Card is always formed as a sublist to cell 3.

The list structure corresponding to a set of
Annotation Cards is almost identical to the structure shown
in Figure 5.6. The Annotation List also has the task name in
cell 1 but omits a second data cell. Thereafter each sublist
contains 13 cells; the first cell contains the card identifier
and the remaining 12 contain the alphanumeric information exactly
as it appears on the card. The information is stored in six-
character (1 word) blocks, one to each cell. The second and
third identifier fields on the Annotation Cards are combined
by the program into one identifier which is stored in the first
cell of each sublist. The first character of the identifier
is the letter 'T' or 'C' depending upon the card type (Title or
Comment, respectively). The remaining characters comprise the
card number from the third identifier field.

5.2.4 Other Uses of the SAC-1 System

The availability of the SAC-1 system led to the use
of list structures for other applications. In the Schedule
Generator, the endpoints of the start-time windows as well as
the start-times of each task are stored as lists. These appli-
cations will be explained as part of the functional descriptions
of the Schedule Generator (Section 7.0).

5.3 Auxiliary Storage

5.3.1 $Storage Characteristics

The Bellcomm time-shared computer system gives low
priority and poorer service to programs with large core require-
ments but does not penalize programs that use the auxiliary drum
storage facilities. It is therefore advantageous to make use of
these auxiliary facilities wherever feasible.

In the ATS, the bulk and accessing requirements of
the task description data make it highly desirable to store
these descriptions on drum storage. The ATS can accommodate
up to 200 tasks with each containing a minimum of four (and
usually many more) task description cards. If the list structures
for all of the task descriptions were in core simultaneously,

BELLCOMM, INC. 5-16

the number of SAC-1 cells required would be prohibitively
high. The Scheduling Generator however refers to only one
task Descriptor List at a time, since the tasks are processed
sequentially. These factors led to a decision to store the
bulk of the task description data on auxiliary storage,
bringing into core only one set at a time, as needed.

There are four distinct types of auxiliary bulk
storage available on the Bellcomm computer system -- magnetic
tape, two classes of magnetic drum, and FASTRAND (which is also
a drum, but of enormous capacity). Tape is not a suitable
medium for storing the task descriptions because it allows only
sequential reading and writing operations, whereas the task
data will have to be retrieved in a data dependent order.

(Tape is usually used to store the Permanent Data Bank, the
ephemeris resource tables, and the History Tape, although they
can equally well be kept on FASTRAND.) The characteristics of
the three drum devices are shown in Table 5.2. Logically, all
three devices appear identical to the user. The unit to be
used can be specified on a control card at run time, or alter-
natively may be left to the system to assign based on availa-
bility. Ordinarily, the two fast drums are only used for
scratch storage during execution of a program while

FASTRAND is used for long term storage of programs and data.

Records may be written into and retrieved from an
assigned file either sequentially or, with a little more effort,
in arbitrary order. The latter option is used in ATS for the
task descriptions. Each task description occupies its own
standard sized record; the record size being large enough to
accommodate a rather lengthy description. A special subroutine
handles the retrieval and storage of each record via a similarly
sized buffer block in core.

5.3.2 Storage of the Task Descriptions

5.3.2.1 The Symbolic Representation of a Linked-List

When a task description is stored in core in linked-
list structure, its complex branching structure is defined through
the use of the branching nodes (the cells containing sublist
pointers in their element fields) as illustrated in Figure 5.6.
However, a substitute notation is required to store the task
description data in a linear array on the storage drum.

A linked-list structure may be represented symbolically
by separating successive data items on a list by commas and
enclosing the set of data items with parentheses. Using this

notation, the simple list structure in Figure 5.3b would be
represented as

5=17

065'ST Z6

000‘0%C LT
000‘0%2 €'y
(puooas/spaom) (SpUOO®STTTTW)
o3ey Wty

IoFsuea], paIoM sso00y 9bevasay

960°'020°CTC

ZSsT‘L60°C

A ANEA YA

(spaoMm)
K3toede) obeiols

aberolg umig AxeTTTIXNY

80TT OVAINN FO sSOT3SsTI=IDRIRYD

¢S STqedL

IT ANVILSVYA

Z8LT-HA

Ze€y-HA

3TUN

BELLCOMM, INC. 5-18

(DI1,DI2,DI3,DIA4)

Similarly, the symbolic representation of the list structure
in Figure 5.5 would be

(b1I1,DI2, (DI3A,DI3B),DI4, (DI5A,DI5B,DI5C))

5.3.2.2 Conversion of a Linked-List Structure to an Interval
Representation of its Symbolic Form

In the ATS, task description data is removed from
the linked-list structure and converted to a continuous string
of Hollerith symbols of the form shown above. Six-bit codes
for the right parenthesis, the left parenthesis, and the comma
are inserted into the string where appropriate. The 36-bit
data items are extracted from the element fields and included
at the appropriate points in the string. The six-bit code
representing the letter O is inserted into the string immedi-
ately preceding each data item. The six-bit code is used to
signify the presence of a data item. When the code is detected
during the reconstruction of a list, the next 36-bits are
placed in the element field of an available cell without regard
to the type of data (integer, floating point, or Hollerith)
that it may represent.

Two subroutines are used to make these conversions.
A call to Subroutine TWRITE

CALL TWRITE(O,X,BUFFER) *

converts List X to its symbolic form by extracting the data item
from the element field of each cell on the list and inserting

the necessary delimiters (commas and parentheses) where neces-
sary. The resulting bit stream is placed in successive locations
in Array BUFFER. Similarly, Function Subprogram TREAD is used

to reconstruct the list from its symbolic representation. The
statement

X=TREAD (O,BUFFER) *

will reconstruct the list described by the bit stream in Array
BUFFER by placing each of the data items into the element field
of an available data cell and connecting the cells in the manner
indicated by the position of the delimiters.

*Reference 8.

BELLCOMM, INC. 5-19

5.3.2.3 Task Description Storage Files

As noted above, the task descriptions are stored
on magnetic drum files for the duration of the run. The
descriptions are stored on two separate files: the first
file contains the symbolic representation of the Annotation
List for each task while the second file contains the symbolic
representation of the Descriptor List for each task. On each
file, the data pertaining to each task is stored in a separate
logical record. The records appear in the same sequence on
both files. Therefore, when the ith record on the first file
contains the Annotation List for a particular task, the ith
record on the second file will contain the Descriptor List
for the same task.

Each file is created by first constructing the
symbolic representation of the linked-list in Array BUFFER
(Section 5.3.2.1) and then writing the contents of the array
onto the file. Note that the entire contents of Array BUFFER
are written onto the file regardless of how many locations
within the array were actually used for the symbolic represen-
tation of the list. The logical records are therefore all of
equal length which permits them to be randomly accessed by
specifying the record number.

The FORTRAN statement
CALL DWRITE (IUNIT, BUFFER, NWDS,K)*

writes a record of length NWDS from Array BUFFER onto the kth
record of the drum file assigned as logical unit IUNIT. Sub-
routine DWRITE computes the relative address of the file's jth
sector by assuming equal length records of size NWDS and equal
length sectors of 28 words. Hence the relative address of the
beginning of the kth record on the file becomes K(NWDS)/28.
Note therefore that the size of Array BUFFER, variable NWDS,
must be a multiple of 28.

Retrieving a record from the file is similarly
performed by Subroutine DREAD where the statemcnt

CALL DREAD (IUNIT, BUFFER, NWDS, K)*

causes the kth record of length NWDS to be copied from the
file into Array BUFFER.

*Reference 8.

BELLCOMM, INC. 5-20

5.3.2.3 Summary

In summary, writing a Task Descriptor or Annotation
List onto a drum file is a two-step process: first the conver-
sion of the internal linked-list structure to a bit stream
representing the symbolic representation of the list and second,
the placement of that representation onto the drum file.
Retrieving a list from the file is the logical inverse of
the two-step writing process: the record containing the
symbolic representation of desired list is copied from the
appropriate file into Array BUFFER and then the linked-list
structure is reconstructed from the contents of the array.
Note that the dimension of Array BUFFER places a practical
limit on the number of Descriptor and Annotation Cards that
can be included in a single task description. In the current
version of the ATS, Array BUFFER is dimensioned to 308 locations
which means that a task description may have no more than 35
Descriptor Cards and no more than 17 Annotation Cards.

BELLCOMM, INC.

6.0 Functional Description of the Data Bank Generator

The Data Bank Generator is used to create and
maintain a permanent Data Bank. The bank contains the
descriptions of each task as well as a table of contents
that indexes all of the tasks in the bank. The bank may
be stored on magnetic tape or FASTRAND; its format and
use are independent of the storage medium.

The format of the Data Bank is shown in
Figure 6.1 where each rectangle represents a separate
logical record. The first record on the file contains
the value of the FORTRAN integer NTOC, the number of
tasks stored in the bank. The TOC array in the second
record serves as the bank's table of contents. The first
column of each entry in the array contains the name of the
task, the second column contains the task priority, and the
third column contains the date of the task's last revision.

The remainder of the bank contains the task
descriptions. Each description is stored on two sequen-
tial records. The first record contains the symbolic string
representation of the Annotation Card data while the
second record contains the Descriptor Card data stored in
the same form. The maximum number of tasks in the Data
Bank is limited by the dimension of the TOC array. The
program currently provides for a maximum of 200 entries.

The overall flow diagram for the Data Bank
Generator* (Routine TDBANK) is shown in Figure 6.2.*%*
After setting up the Available Space List, the program
reads a NAMELIST input that includes the value of flag
NEW. When the value of NEW is left at zero, the program
assumes that an existing bank is to be modified. Under
this assumption, it reads the value of NTOC and the TOC
array from the bank and then transfers all of the task
descriptions from the permanent bank to drum storage
(Section 5.3.2.3) before reading the incoming task descrip-
tion cards. The value of NEW is set equal to one when a

*A description of the job deck required to use the
Data Bank Generator is presented in Section 9.1.

**The letters inscribed by circles in all of the flow
diagrams represent points in the functional flow.

6-2

PRECEDING PAGE BLANK NOT FILMED

NTOC

TOC ARRAY

TASK 1
ANNOTATION LIST

TASK 1
DESCRIPTOR LIST

TASK 2
ANNOTATION LIST

TASK 2
DESCRIPTOR LIST

TASK 3
ANNOTATION LIST

FIGURE 6.1 — FORMAT OF THE DATA BANK FILE.

63

I ROUTINE TDBANK —l

v

L SET UP ASL]
v

L READ NAMELIST INPUT ‘l
NO NEW=0
YES

READ NTOC AND TOC ARRAY
FROM PERMANENT DATA BANK

v

TRANSFER ALL TASK DESCRIPTIONS
FROM THE PERMANENT DATA BANK
TO TEMPORARY STORAGE

y

READ A TASK DESCRIPTION CARD

v

DETERMINE CONTENTS OF
FIELD (1) AND FIELD (2}

v

L STORE REMAINING CARD DATA—I

IS THE
REQUIRED
LIST CURRENTLY IN
CORE?

YES

WRITE TASK LIST CURRENTLY IN
CORE ONTO APPROPRIATE RECORD

FIELD {1) = LAST

I:IND REQUIRED TASK IN TABLE OF CONTENTS

MATCH

YES

[READ IN REQUIRED TASK LIST

]

IS THIS
CARD AN ANNOTATION
CARD?

YES NO

v

SET UP TASK LISTS
FOR NEW TASK

v

ERROR EXIT

WRITE NTOC

MODIFY NTOC AND
TOC ARRAY

MODIFY TASK
ANNOTATION LIST

MODIFY TASK
DESCRIPTOR LIST

'

v

TRANSFER ESCF

FROM TEMPORARY STORAGE TO THE
PERMANENT DATA BANK

FIGURE 6.2 — OVERALL FLOW DIAGRAM FOR THE DATA BANK GENERATOR.

BELLCOMM, INC. 6-4

new bank is to be created. 1In this case the program
proceeds directly to reading the task description cards.

All modifications specified by the incoming
description cards are made to the task descriptions stored
on the drum files. NTOC and the contents of the TOC array
are also modified as necessary. When the modifications
are complete (as indicated by the Last Card), a new data
bank is created with the updated information.

The flow diagram for processing a Description
Card is shown at Point A in Figure 6.2. When a card is
read, the contents of the first two identifier fields are
placed in the first two locations of Array FIELD. If the
card is a Descriptor Card, the contents of the remaining
fields are placed in successive locations in the FIELD
array; if the card is an Annotation Card, the remaining
information is placed, character by character, into Array
COMENT. After the data on the card has been interpreted
and stored, tests are made to determine if the list currently
in core (i.e., the list required by the previous card) is
the one needed by the current card. If so, the program
transfers to the appropriate subsection where the modifi-
cations are made. If the list in core is not the required
one, it is written out onto the appropriate record on the
drum and a search is made of the task names in the TOC array
to determine a match with the name stored in FIELD(l). When
a match is found, the location of the corresponding record
is obtained from the fourth column of the array for that
entry, and the required list is retrieved from the drum
file as described in Section 5.3.2. The program then
transfers to the appropriate subsection to perform the
modifications indicated on the card.*

The same methodology is used to modify the
Annotation and Descriptor Lists. The information in the
appropriate array (COMENT or FIELD) array is put into a
list structure. The task sublists are searched until all
of the identifier fields on the sublist match the respec-
tive fields in the new sublist. When a match is found,
the old sublist is deleted or replaced with the new sublist
as indicated. If no match is found, the sublist is added
to the existing list structure.

If the name in FIELD(l) cannot be matched with a
name in the TOC array, the program assumes that the name in

*See Reference 9.

BELLCOMM, INC. 6-5

FIELD(l) is the name of a new task. The identifier in
FIELD(2) must then be 'TITLE', indicating a Title Card,
or execution of the program will terminate with an error
message.* If the card is a Title Card, the name is added
to the TOC array, NTOC is increased by one, and the list
containing the one Title Card is written out as the last
record on the Annotation File. An empty record is also
written out onto the Descriptor File to reserve that
record for the task's descriptor list and hence preserve
the parallelism between the two drum files.

There are two exceptions to this flow: the
processing of Equivalence and Delete Cards. When the
input card is an Equivalence Card, the TOC array is
searched to determine a match with the name in the third
identifier field on the card rather than FIELD(1l). When
the match is found, the Descriptor and Annotation Lists
for that task are copied into core and modified by placing
the name of the new task in the first cell of each list.
The name of the new task is added to the TOC array, HTOC
is increased by one, and both lists are written out as
the last record on their respective drum files. Noteée that
the lists for the new task are now separate and distinct
from the corresponding lists for the original task. Subse-
quent modifications to either task description will have no
effect upon the other. ‘

When a task is to be deleted, NTOC is reduced
by one and all subsequent entries in the TOC array are
moved up one location, thus removing the reference to the
deleted task. When the Last Card is encountered, the task
descriptions will be transferred from the drum files to the
Permanent Bank using the record numbers entered in the fourth
column of the TOC array. Hence, the records for the deleted
tasks will simply not be transferred. The final table of
‘contents as well as the Annotation and Descriptor Lists for
each task are printed out as the information is transferred
to the Permanent Data Bank File, thus giving the user a
complete description . of the contents of the bank.

*Section A.1.1.

BELLCOMM, INC.

7.0 Functional Description of the Schedule Generator

The Schedule Generator is divided into four
functional areas: executive control, initialization,
window-finding, and scheduling. The executive control
area exercises overall control of the program's exe-
cution while the initialization area controls the
processing of all input data. Start-time windows for
each task are determined by the window-finder. Finally,
the scheduler section selects specific start-times from
points within the start-time windows that are consistent
with the task's performance objectives and "schedules"
the task by updating the appropriate resource tables.

As stated above, the primary output of the
Schedule Generator is a time history of the commitments
for each resource and a list of start-times for each task.
The data is printed out at the completion of the schedule
and, on option, at regular intervals during the scheduling
process. The frequency of the intermediate printout is
specified by the user. Also on option, the program will
print out a table illustrating the derivation of the task
start-time windows thus enabling the user to observe the
origins of the output data.

7.1 Executive Control

Figure 7.1 shows the overall flow diagram for
the Schedule Generator* (Routine MAIN). The scheduling
loop begins at Point A, immediately after initialization.
The variable IPRIOR is incremented by one and a list is
compiled (from a table of contents) of all tasks having a
priority equal to IPRIOR. The tasks on this list are then
considered for scheduling in the order of their occurrence.

After the descriptor list for the task in
question has been retrieved from the auxiliary storage
file, three preliminary tests are made. First, the quantity
of each resource specified on an Amount Card is checked to
insure that there is a sufficient amount available to
Support the minimum number of performances required (NPERFQ).
If there is an insufficient amount of any resource, the
task cannot be scheduled and so is not considered further.
Similarly, a check is made to insure that each independent
task specified on Enable and Inhibit Cards has already been

*A description of the job deck required to use the
Schedule Generator is presented in Section 9.2.

7-2

ROUTINE MAIN
SET UP ASL

CALL SUBROUTINE SETUP TO
INITIALIZE SCHEDULE GENERATOR
-

[PRINT OUT ALL RESOURCE TABLE81

i PRINT OUT ARRAY ORDER i

A —
|
| IPRIOR = IPRIOR + 1 I
PREPARE A LIST OF TASKS, LTASK,
HAVING PRIORITY IPRIOR
8 »> /j\
——ES G Task = >N

MOD (IPRIOR, IPRINT) =0

PRINT ALL RESOURCE TABLES

\ 4

UPDATE HISTORY TAPE

v

READ IN DESCRIPTOR LIST OF THE
NEXT TASK ON LIST LTASK

v

FIND NPERFQ AND DPERF FROM
THE DESCRIPTOR LIST

IS THERE A
SUFFICIENT AMOUNT OF EACH REQUIRED
CONSUMABLE FOR NPERFQ PERFORMANCES ?

RESET DPERF iF NECESSARY TO THE MAXIMUM # OF PER-
FORMANCES FOR WHICH SUFFICIENT CONSUMABLES EXIST

INDEPENDENT TASKS SPECIFIED
ON ENABLE AND INHIBIT CONSTRAINTS
BEEN CONSIDERED

CALL SUBROUTINE CREW TO SETUP
CREW REQUIREMENTS

NOCREW = 0>NC

YES

CALL SUBROUTINE WINDOW TO
FIND TASK START-TIME WINDOWS

NO

TSKWIN >0

YES

CALL SUBROUTINE SCHED TO
FIND TASK START-TIMES
L

v

[IORDER = IORDER + 1]
T

| UPDATE ORDER ARRAY]

FIGURE 7.1 ~ SCHEDULE GENERATOR OVERALL FLOW DIAGRAM.

BELLCOMM, INC. 7-3

considered and that where applicable, the number of
performances scheduled is not less than NPERFQ. Again,
if these conditions are not satisfied, the task cannot
be scheduled and is not considered further.

Crew assignments are made by Subroutine CREW.
The subroutine replaces all skills named in the task Descrip-
tor List with the name of the crewman who possesses that
skill and then collects and counts the unassigned crewmen.
The subroutine checks to insure that

1. The same crewman is not specified by
name and skill, and

2. The number of unassigned crewmen is
not less than the number of undesig-
nated crewmen (i.e. ANY) required.

If either or both of these conditions cannot be met, the
variable NOCREW is set equal to one indicating that the task
cannot be scheduled.

When all of the preliminary tests are satisfied,
the task start-time windows are determined by a call to
Subroutine WINDOW, the executive program for the window-
finder area. If one or more windows are found (TSKWIN>O0),
an attempt is made to schedule the task by calling Subroutine
SCHED, the control program for the scheduler section. The
output of Subroutine SCHED is a list of task start-times,
The variable IORDER, representing the number of tasks
processed, is then increased by one. The task name and the
address of the start-time list are inserted as the IORDER
entry in the ORDER array (columns 1 and 2 respectively).

If no performances are scheduled, a zero is entered in place
of the list address.

When all of the tasks at the priority level have
" been considered, all of the resource tables and the working
arrays are written out onto the history tape, if the input
variable ITAPE is equal to zero. The resource tables are
also printed out whenever the variable IPRIOR is an exact
multiple of the input Print Frequency Flag, IPRINT.

7.1.1 The History Tape

The format of the History Tape is shown in
Figure 7.2. A general header, written at the conclusion
of the initialization process (Section 7.2), includes all

pertinent initialization data; i.e., the entire contents
-

GENERAL HEADER

IPRIOR, IORDER, IMULTI

WORKING ARRAYS

1ST LIST OF START-TIMES

2ND LIST OF START-TIMES

IMULTI LIST OF START-TIMES

IPRIOR, IORDER, IMULTI

WORKING ARRAYS

1ST LIST OF START-TIMES

2ND LIST OF START-TIMES -

IMULTI LIST OF START-TIMES

FIGURE 7.2 — HISTORY TAPE FORMAT.

BELLCOMM, INC. 7-5

of the WA array (including ephemeris data), the task
table of contents, the initial configuration of the
working arrays, and the final configurations of the
task descriptions. The intermediate data, written

at every priority level, contains the resource commit-
ment tables, the working arrays (ORDER, LTABLE, etc.)
and the symbolic string representation of every list
of task start-times.

The intermediate data is written out in

IMULTI+2 separate records, where the variable IMULTI

is the total number of start-time lists whose addresses
are entered in the ORDER array. The first record of
the set contains the values of IPRIOR, IMULTI, and
IORDER, the total number of entries in the ORDER array.
The working arrays are written out onto the second
record and the remaining IMULTI records contain the
symbolic string representation of the start-time lists
in the order of their appearance in the ORDER array.

7.2 Initialization

All initialization procedures are controlled
by Subroutine SETUP. The flow diagram for the subrou-
tine, which is called directly by the executive, is
shown in Figure 7.3.

The value of the input variable IPRIOR determines
the source of the initialization data. A value of IPRIOR
equal to zero indicates that a completely new schedule is
to be generated. For this option SETUP calls Subroutine
TABIN which initializes all data tables from inputs speci-
fied in the NAMELIST. TABIN makes the necessary entries
in Arrays LTABLE (Section 5.1.2), DTABLE (an array containing
the maximum guantities and usage rates for each consumable) ,
and CRWSKL (an array containing the name of each crewman
and his assigned skill). In addition, it reads ephemeris
data directly into the WA array and allocates space in
that array for each of the resource commitment tables
specified in LTABLE. After initialization of the tables,
the descriptions of the tasks specified in the NAMELIST
input are transferred from the Permanent Data Bank to the

76

SUBROUTINE SETUP

READ NAMELIST

«
<
CALL SUBROUTINE INITAL
TO INITIALIZE FROM THE
INPUT HISTORY TAPE CALL SUBROUTINE TABIN TO INI-
TIALIZE TABLES FROM INPUT
DATA
A 4
<
.
\ 4 TRANSFER DESIGNATED TASK
DESCRIPTIONS FROM DATA BANK
TO TEMPORARY STORAGE
y
> < e

y
READ A TASK DESCRIPTION CARD |

DETERMINE CONTENTS OF
FIELD {1} AND FIELD (2)

STORE REMAINING CARD DATA

REQUIRED LIST CURRENTLY IN

WRITE TASK LIST CURRENTLY IN
CORE ONTO APPROPRIATE RECORD

FIELD (1) = LAST

FIND REQUIRED TASK IN TABLE OF CONTENTS

INITIALIZE OUTPUT

MATCH HISTORY TAPE

YES

7 §

SET UP TASK LISTS
FOR NEW TASK

READ IN REQUIRED TASK LIST‘I
I

RETURN

MODIFY NTOC AND
TOC ARRAY

ISTHIS
CARD AN ANNOTATION
CARD?

YES NO

MODIFY TASK
DESCRIPTOR LIST

MODIFY TASK
ANNOTATION LiST

FIGURE 7.3 ~ FLOW DIAGRAM FOR THE SCHEDULE GENERATOR INITIALIZATION AREA.

BELLCOMM, INC. 7-7

temporary drum files. (If no descriptions are to be taken
from the Data Bank, the variable IGNORE must be set equal
to 'ALL' in the NAMELIST input.)

A value of IPRIOR greater than zero indicates
that a previously generated schedule is to be completed
and so the program must be initialized at some intermediate
point with data from the History Tape. Under this option,
SETUP calls Subroutine INITAL which reads in the general
header and the working arrays as they appeared after all
tasks at the IPRIOR priority level had been considered.

Additions and modifications to these task
descriptions are accomplished in exactly the same way as
in the Data Bank Generator (Figure 6.2) with one excep-
tion: the Delete Card cannot be used in the Schedule
Generator. 1In the latter program, the task may be removed
from scheduling consideration by setting the variable
NPERFQ on the task's Objective Card equal to zero. The
initialization process is finished when the Last Card is
encountered. At that point the input data and all of the
task descriptions are written onto a new History Tape
(unless inhibited by setting the variable ITAPE equal to
one in the NAMELIST input) and control is transferred back
to the executive area.

7.3 The Window-Finder

The window-finding process closely follows the
basic algorithm described in Section 2.3; i.e., all start-
time windows for the ith requirement (or level) are deter-
mined between the limits BLIMIT and ELIMIT, the endpoints
of a start-time window defined for the i-1 level.

As illustrated in Figure 2.3, the determination
of the next level at which start-time windows are computed
depends upon the result of the computations at the current
level. For example, the search for windows at Level C was
attempted because an acceptable window was found at Level B.
Similarly, computations at Level D were attempted because
acceptable windows were found at Level C. However, when no

windows were found at Level D for the window Cl - Ci, the

BELLCOMM, INC. 7-8

the new limits C, - C, were substituted and the computations
[}

1~ Dl had
not been found, the program would have had to return all the
4

way to the Level A, substitute A, - A, for the window limits,

for the Level D were repeated. If the window D

and then proceed down to the Level B again.

The uncertainty of which level will be required
next necessitates that the data pertaining to all levels be
equally accessible. To achieve random accessing of the
sublist structures in the Descriptor List, the address of
each requirement and constraint sublist (with the exception
of Amount Requirements) is placed in sequential locations
in the REQ array. Hence for the Sleep Descriptor List shown
in Figure 5.6, REQ(l) would contain the address stored in
the element field of cell 4, REQ(2) the address stored in
the element field of cell 5, etc. Hence, access to the ith
sublist can be quickly obtained through reference to a
subscripted variable.

The endpoints of the corresponding start-time
windows for each requirement level are stored in two parallel
lists, one containing the lower values for each window at
that level, the other containing the higher values for the
same windows. The addresses of these lists are similarly
stored in an array. The first column of the ith entry in
array LVWIN contains the address of the list of lower values
while the second column of the same entry contains the
address of the list of higher values. The configuration is
illustrated in Figure 7.4 for the start-time windows shown
in Figure 2.3. Note that the figure does not show all of
the endpoints. Each pair of endpoints is discarded as it
is used to define the limiting values to the next level.

The figure illustrates the contents of the array at the

]
point when window El - El is discovered. Hence, the end-
1]] 1]
p01nts'for windows Al - Al, B1 - Bl’ C, - Cl, c, - C
D; - Dl have already been discarded.

and

1 2 2!

Subroutine WINDOW exercises overall control of
the window-finding process. A flow diagram for the sub-
routine is shown in Figure 7.5. The window-finding process
begins after the addresses of descriptor sublists are
entered in the REQ array and the variables BLIMIT, ELIMIT,
and I (the level indicator) are initialized. Each sublist

‘SMOQNIM JWIL-LYVLS 40 IDVHOLS — ¥'Z 3HNOIL

L3 Ly
- g
1 | o L
0 b 0
o 0 £ 0
0 z 0
€v ‘v Sy Ey
- - L P
o |t t | o L 1
‘ON N
zi0o AN oo o

NIMAT AVHYY

SUBROUTINE WINDOW

v

LOAD ADDRESSES OF APPLICABLE DESCRIPTOR
SUBLISTS INTO THE REQ ARRAY

BLIMIT=0
ELIMIT = TOTAL MISSION TIME

T

SET TYPE EQUAL TO THE CONTENTS OF THE
FIRST CELL ON THE ith SUBLIST

CALL SUBROUTINE
OVRALL TO DETERMINE
START-TIME WINDOWS

CALL SUBROUTINE
ENWIN TO DETERMINE
START-TIME WINDOWS

TYPE = "ENABLFE’

CALL SUBROUTINE
INWIN TO DETERMINE
START-TIME WINDOWS

TYPE = 'INHIB’

CALL SUBROUTINE RESRCE TO
DETERMINE START-TIME WINDOWS

FIGURE
7.5b

N

FIGURE 7.5a — FLOW DIAGRAM FOR THE WINDOW—FINDER AREA

NO

WINDOWS BEEN FOUND

711

HAVE ANY NO

AT THIS LEVEL?

IS THIS YES

v

RECORD THE WINDOWS AT THIS LEVEL

THE LAST
LEVEL?

AS THE TASK START-TIME WINDOWS

SET BLIMIT & ELIMIT TO LOWER AND UPPER
ENDPOINTS OF THE FIRST WINDOW AT THIS LEVEL

v

DISCARD THESE WINDOW ENDPOINTS

v

I=1+1

RETURN

NO

LVWIN (1, 1) =0

FIGURE 7.5b — FLOW DIAGRAM FOR THE WINDOW-FINDER AREA (CONTINUED).

BELLCOMM, INC. 7

12

is treated separately. The type designation is retrieved
from the first cell of the sublist and the program transfers
to one of four subroutines depending upon the contents of
that cell: Subroutine OVRALL attempts to determine start-
time windows for time constraints, Subroutine ENWIN is used
for enable constraints, Subroutine INWIN for inhibit con-
straints, and Subroutine RESRCE for resource requirements.
When control is returned to WINDOW, the requirement level
indicator I is reset depending upon the results of the
search for start-time windows. If acceptable windows have
been found, the variables BLIMIT and ELIMIT are reset to
the endpoints of the first window found at that level.

The endpoints are removed from their respective lists, the
level indicator is increased by one, and the process is
repeated. When no windows are found, the level indicator
is decreased until windows are found and the process is
reinitiated from that point.

When the level indicator is at the last level,
the windows at that level are recorded as acceptable start-
time windows for the task. The windows are recorded in the
complex list structure illustrated in Figure 7.6. Each
sublist of the List TSKWIN contains all of the information
relating to one start-time window. The first two cells
contain the lower and upper endpoints of the window. If
required, the remaining cells on the sublist contain the
names of the crewmen selected by the program to fulfill the
'ANY' requirements. These names will not necessarily be
the same for every window.

7.4 The Scheduler Area

The Scheduler Area selects start-times for
individual task performances from points within the task's
start-time windows. The start-times are selected to be
consistent with the task's performance objectives. The
output of the Scheduler Area is a list of start-times,
START, the configuration of which is virtually identical
to the configuration of the list of start-time windows,
TSKWIN. In fact, there is only one difference: the first
two cells on each sublist in TSKWIN (Figure 7.6) contain
the endpoints of a task start-time window, while in list
START, these two cells are replaced with one cell containing
the actval start-time of the performance. As in TSKWIN,
the remaining cells on the list, if any, contain the names
of the crewmen selected to fulfill the 'ANY' requirements
for that start-time.

713

1 1 — 1
TSKWIN > | >
4
) 1
E,

EY
—_—
_ ‘.'j‘}“
L_°_L_1_J__’":
I CREWA

FIGURE 7.6 — CONFIGURATION OF THE LIST OF ACCEPTABLE TASK START-TIME
WINDOWS AS QUTPUTTED FROM THE WINDOW-FINDER AREA.

BELLCOMM, INC. 7~14

Subroutine SCHED has overall control of the
Scheduler Area. Its flow diagram is shown in Figure 7.7.
If only one performance of the task is to be scheduled
(DPERF=1), the program selects the lower endpoint of the
first start-time window on List TSKWIN. If more than one
performance is desired, the 'Objective' sublist is inter-
rogated further to determine how these multiple performances
are to be spaced. If both a nominal time between performances
(TIMBET) and a tolerance on that time (TOL) are specified,
the program transfers control to Subroutine MULTI which
determines the number of performances (NPER) that can be
scheduled consistent with the specified performance objec-
tives. If NPER is less than NPERFQ, the minimum number
required, the task cannot be scheduled. If NPERF>NPERFQ,
control is transferred to Subroutine STIME which selects
the actual start-times for NPER performances.

If TIMBET is not specified or is specified as a

minimum, SCHED transfers control to Subroutine ASTART.
ASTART selects the minimum time between performances as
the greater of two quantities: the specified value of
TIMBET or the time required for one performance of the
task (defined as the length of time from the earliest
beginning of a resource requirement to the latest end time
of a resource requirement). The subroutine then selects
as many start-times as possible to a maximum of DPERF.
Again the task will not be scheduled if NPER<NPERFQ. If the
task is to be scheduled, the program transfers to Subroutine
ENTRY which updates all of the required resource tables and
decreases the appropriate amount of each required consumable
from the total stored in array DTABLE.

7-15

SUBROUTINE SCHED

DPERF >1

SELECT THE LOWER ENDPOINT OF
THE FIRST START-TIME WINDOW
AS THE TASK START-TIME

TIMBET =0

YES

YES

TOL = 'MIN’

v

CALL SUBROUTINE MULTI TO FIND

THE MAXIMUM NUMBER OF PE
MANCES, NPER, THAT CAN BE
SCHEDULED

RFOR-

CALL SUBROUTINE ASTART TO SELECT
NPER START-TIMES FOR THE TASK

NO

NO

NPER =NPERFQ

CALL SUBROUTINE STIME TO SELECT

START-TIMES FOR NPER PERFORMANCES

NPER=NPERFQ

v YES

’lﬁ

CALL SUBROUTINE ENTRY TO

SCHEDULE THE TASK BY UPDATING

ALL APPLICABLE TABLES

\V

k

RETURN

FIGURE 7.7 — FLOW DIAGRAM FOR THE SCHEDULER AREA

BELLCOMM, INC.

8.0 Functional Description of the ATS Data Processor

The Data Processor, like the Schedule Generator,
is divided into four functional areas: executive control,
initialization, coaxial (horizontal) plot generation, and
periodic (vertical) plot generation.* As their names
imply, the executive area exercises overall control of the
program's execution, the initialization area controls the
input of data from the History Tape, and the plot genera-
tion areas control the generation of the instructions and
the selection of the appropriate data to produce the plot
requested.

Plots generated by the Data Processor are
actually created on the Stromberg-Carlson SC-4020 High-Speed
Microfilm Recorder, a computer-driven plotter designed to
operate as peripheral equipment to a high-speed digital
computer. Each plot frame is first exhibited on the
recorder's cathode ray tube. The tube face is then photo-
graphed and copies are reproduced on 35mm film or nine-inch
sensitized vellum (7.5 inch square plot). Plots requiring
more than one frame must be generated on a frame-by-frame
basis.

The construction of the Data Processor is heavily
influenced by the characteristics of the SC-4020 and its
software library as well as the construction and operating
characteristics of the AUPLOT system (References 11 and 12)
which was used as an interface bewteen the ATS Data Processor
and the SC-4020 software. Therefore, a discussion of the
characteristics of these systems is presented in Section 8.1.
Descriptions of the functional areas comprising the Data
Processor follow in Sections 8.2 through 8.4.

8.1 Generation of Plots Using the SC-~4020 and Auplot Systems

The SC-4020 is usually operated off-line from a
magnetic tape input. The tape contains a series of commands
to the plotter which are generated by a set of FORTRAN and
assembly language computer programs designed specifically
for this purpose (the SC-4020 and the accompanying software
library are described in Reference 10). The programs enable
the user to develop grid backgrounds, scale data, and print

*The terms "horizontal" and "vertical" refer to the

3 1 3 3 A + - SN | 2 -1 [SO S |
ecticn in which the independent variable is plotted,

referenced to the conventions established in Reference 10.

2

BELLCOMM, INC. 8-2

alphanumeric information in addition to plotting and
connecting individual points on a curve. Though gquite
extensive, the software package requires the user to
generate plot commands through a large number of compli-
cated calls to specific-task subroutines (e.g. plot
point, draw line, scale data point, etc.). Rather than
use these routines directly, the construction of the
Data Processor was significantly simplified by using the
AUPLOT system as an interface between the programs in the
Data Processor and those in the SC-4020 software library.

Though the AUPLOT system was designed as a
general purpose interface between a user's program and
any software library of a computer-driven plotter, its
current version is implemented to interface specifically
with the SC-4020 software library. The primary advantage
to using AUPLOT is that while it also requires the user
to generate a series of plot commands (subroutine calls),
these commands are far more comprehensive and easier to
implement than those permitted by the SC-4020 library.
AUPLOT translates these comprehensive commands into one
or more specific calls to the 8C-4020 library routines.

8.1.1 Summary Description of the AUPLOT System

The following is a summary description of the
basic features of the AUPLOT system and how they apply to
the ATS Data Processor. A complete description of the
system and its capabilities is presented in References 11
and 12.

The AUPLOT system is executed in two separate
phases. The AUPLOT subprograms used in the first phase
are called directly by the user's programs during execu-
tion. The AUPLOT subprograms place data tables and
instructions (i.e., plot requests, legend information,
scaling information, etc.) on an intermediate storage file,
IOPLT. Phase 2, which is executed at the completion of
the user's program during the same run, processes the
instructions on file IOPLT in the same order in which they
were placed on the file. Phase 2 generates output file PLOT
using the subprograms from the SC-4020 library. This file,
containing the specific instruction codes to drive the
SC-4020, is stored on magnetic tape to be input to the
plotter at some later time.

BELLCOMM, INC

When AUPLOT is used,

all communications between

the user's program and the SC-4020 software library are made

via the AUPLOT subprograms. A
are available to the user from
tion library. Each command is
a specific subroutine in Phase
or a data point onto the IOPLT
the execution of Phase 2, each

large number of instructions

the standard AUPLOT instruc-

issued as a separate call to

1 which places an instruction
file. When processed during

instruction is routed to a

specific subroutine (or group of subroutines) which calls
programs in the SC-4020 library. Therefore, any extensions
to the standard AUPLOT instruction library require the
addition of two subroutines: the first to interface with
the user's program during the execution of Phase 1 and a
corresponding subroutine to interface with the SC-4020
library routines during the execution of Phase 2.

Three routines were added to the standard set of
Phase 1 subprograms to permit the issuance of special labeling
and scaling instructions. Four corresponding subroutines
were added to the set of Phase 2 programs. (Instructions
issued by one of the Phase 1 routines, Subroutine ABLIM, are
processed by one of two subprograms in Phase 2 depending upon
the setting of an indicator flag). Two additional modifi-
cations were made to the Phase 2 routines in order to provide
the capability for shading on the periodic plots (Figures 3.3a
and b). The standard AUPLOT Subroutine PLTXYQ, which is used
to generate the commands for a first quadrant rectangular
graph, was modified to enable it to determine when shading
is to be performed and Subroutine SHADE was added to Phase 2
to generate specific shading instructions.

8.1.2 Collection of Graphical Data

The construction of a graph is a two-step process:
the first step is the collection and storage of all data
points; the second step is the mapping of the data points
into an image space. In the first step, both coordinates
of each data point must be collected. Furthermore, data
points for the independent variable must be monotonically
increasing. AUPLOT facilitates the collecting and storing
of data by building data tables for each variable on a
temporary storage file. The user is thus relieved of having
to provide storage space for the data points in his own
program.

Each data point is stored by a separate call to
Subroutine COLECT. Thus, the statement

CALL COLECT (NAME, VALUE)

enters the number currently stored in the FORTRAN variable
VALUE as the last entry in the table tagged with the

BELLCOMM, INC. 8-4

alphanumeric combination stored in the FORTRAN variable
NAME. Note that all data must be stored as floating point
numbers and that each variable must have a -unigue name.
Thus, if two dependent variables X and Y are to be plotted
against TIME, four data tables with tags TIMEl, X, TIME2,
and Y would be constructed. Mapping instructions would
subsequently be issued to plot TIMEl vs X and TIME2 vs Y.

8.1.3 Plotting of Graphical Data

The image space of the SC-4020 is a first quad-
rant grid of 1024-horizontal by 1024-vertical raster points,
with the origin in the lower left corner. The coordinates
of each point must be specified to the plotter in terms of
these raster points. Therefore, each data point must be
appropriately scaled before it can be plotted. The scale
factors are calculated by routines in the SC-4020 library.
After setting aside space for the margins (which can be
used for labeling information), the scale factors for each
direction are calculated using the endpoints of the display
area (in raster points) and the endpoints of the data range.
Once the scale factors are established, the real values of
each data point are scaled just before the point is plotted.
If the value for either variable is outside the range
defined by the endpoints for that variable, the point will
not be plotted.

The relationships discussed above are illustrated
in Figure 8.1. Suppose, for example, one wished to plot
X vs Y in the display area in Figure 8.1. The horizontal
scale factor would be computed so that the lowest value of
X would be placed somewhere along the line X=L and the highest
value along the line X=R. Similarly, the vertical scale
factor would be calculated to place the lower and upper
endpoints of the Y data range along the lines ¥Y=B and Y=T
respectively. All values between the endpoints would be
plotted in the display area.

When two or more plots are to be superimposed on
the same set of axes, the same factor will be used to scale
all of the variables plotted in the same direction. The user
must insure therefore that the data endpoints used to calcu-
late the scale factors are of sufficient range to include all
of the data for all of the variables. Similarly, graphs
requiring more than one frame must be generated on a frame-by-
frame basis. The scale factors must therefore be recalculated
for each frame using the values of the data endpoints for that
frame.

(o°’ezot)

85

{€zoL'ezoL)

SIXV (H) TVLNOZIYOH

"JHNLINYLS GI1YD 020F-0S — L8 3HNOIY

an

HN

v3dv
AVdSia

I

1N

(0’0

SIXV (A) TVIILHIA

(€zoL’o)

NIDHVI 30VdS IOVWI dOL = 1IW
NI9HVIN 39VdS IDOVIWI LHDIY = HIN
NISHVYW 39vdS IOVINI 14371 =T
NIDHVI 30VdS IDVINI WOL10d = 8N

‘340N

BELLCOMM, INC. 8-6

8.2 Data Processor Executive Control and Initialization

The Data Processor is designed to graphically
display the data produced by the Schedule Generator. The
Data Processor has two sources of input data: punched
cards and a History Tape produced by the Schedule Generator.
The punched cards provide program control and plot descrip-
tion data. The latter includes the alphanumeric names of
the variables to be plotted, the lower (TBEGIN) and upper
(TEND) endpoints of the plot interval in mission elapsed
time, and the scaling and labeling data needed to produce
a finished graph. The History Tape provides the data base
from which the plot data is obtained.

The Data Processor can generate as many plots as
desired in a single run. However, each set of plot descrip-
tions must be input separately. The program reads a set
of data via a NAMELIST, performs the indicated calculations,
and places the appropriate instructions onto the IOPLT file.
The cycle is repeated until the variable LAST is set equal
to one in the set of input data.

The overall flow diagram for the Data Processor*
(Routine ATSPLT) is shown in Figure 8.2. The program is
initialized from the History Tape at the priority level

specified by the value of the variable IPRIOR in the NAMELIST.

The initialization is identical to that same function in
the Schedule Generator (Section 7.2). Both programs use
Subroutine INITAL to read and distribute the appropriate
data from the History Tape to the proper core locations.
The initialization procedure is omitted if the priority
level specified in the input is the same as the one used
for the previous plot. Under these circumstances, the
appropriate data would already be stored in core.

The program transfers to the appropriate plot
generation area on the basis of the contents of input arrays
VSHADE, VPOINT, and HDEP. The arrays VSHADE and VPOINT
contain the names of variables to be included on a vertical
plot. VSHADE contains the names of the variables whose
occurrences are to be plotted as shaded areas (maximum of

*A description of the job deck to use the Data Processor
is presented in Section 9.3.

* %

display of the variables' status at any point in the scheduling

Process.

87

l ROUTINE ATSPLT ‘I

L SETUP ASL |

r

y
READ NAMELIST INPUT]

YES
IPRIOR = IPRSAV

[IPRIOR = IPRSAV]

!

\ 4 L REWIND HISTORY TAPE

v

CALL SUBROUTINE INITAL TO READ
IN DATA FROM THE HISTORY TAPE

L—

CONVERT TBEGIN & TEND
FROM DAYS TO MINUTES

YES
VSHADE (1} >0 OR VPOINT {1) >0

- L ERROR EXIT °
\ 4

CALL SUBROUTINE VPLOT TO GEN- CALL SUBROUTINE HPLOT TO GEN-

ERATE INSTRUCTIONS AND DATA ERATE INSTRUCTIONS AND DATA
POINTS FOR A VERTICAL PLOT POINTS FOR A HORIZONTAL PLOT
L A 4
A 4
NO
LAST =1 P P
YES
PLACE ENDMARKER ON FILE
I0PLT: CALL PLTEND
A l A
FIGURE . FIGURE
8.7a END 8.3a

FIGURE 8.2 — DATA PROCESSOR OVERALL FLOW DIAGRAM,

BELLCOMM, INC. 8-8

three variables) while VPOINT contains the names of the
variables whose occurrences are to be plotted as single
points (maximum of 15 variables). If at least one of
these arrays contains an entry, the program transfers to
the vertical plot generation area.

Similarly, the first column of array HDEP
contains the names of the variables to be included in
a horizontal graph (maximum of five variables). If there
is at least one entry in the HDEP array, the program
transfers to the horizontal plot generation area. When
control is returned to Routine ATSPLT, the cycle is
repeated unless the variable LAST is equal to one. When
the last plot has been processed, an end marker is placed
on the IOPLT file and the execution is terminated.

8.3 Horizontal Plot Generation Area

The logical flow for the horizontal plot
generation area (Subroutine HPLOT) is shown in Figures
8.3a and b. As the figures show, the flow follows the
basic two-step process for the construction of a graph:
collection and storage of data points followed by the
generation of specific plot instructions to map the data
into an image space. '

8.3.1 Data Collection and Storage

Before any data points can be collected,
ordinate limits for each variable must be established
so that the graphs of each variable do not overlap. To
establish these values, an arbitrary scale of 0.0 to
100.0 is used for the Y axis and the ordinate range for
each variable is fixed at 10.0 (15.0 if the number of
variables is less than three). After reserving the lower
ten percent of the ordinate scale for the abscissa scale
marks, the ordinate range between each variable is calcu-
lated from the relation

d = (90-nh)/ (n+l)

where

d = ordinate range between each variable
= number of variables to be plotted
ordinate range for each variable.

o e}
1!

89

L SUBROUTINE HPLOT |

SET'NDEP EQUAL TO THE NUMBER
OF VARIABLES TO BE PLOTTED

v

ESTABLISH ORDINATE VALUES
FOR EACH VARIABLE

——Y

COLLECT DATA POINTS FOR ALL VARIABLES
ITERATE J FROM 1 TO NDEP

HIND = "TIME' +J -1
TLIMIT = TBEGIN + RPF

v

MATCH NAME IN HDEP (J,1) TO A
NAME IN THE LTABLE ARRAY

YE
S MATCH NO

ANALOG VARIABLE

MATCH NAME IN HDEP {J, 1) TO
A NAME IN THE ORDER ARRAY

YES

COLLECT DATA POINTS FOR A
BINARY RESOURCE BETWEEN
TIMES TBEGIN AND TEND

ERROR EXIT

HAVE ANY

PERFORMANCES BEEN SCHEDULED
v NO FOR THE TASK?
COLLECT DATA POINTS FOR AN COLLECT DATA POINTS FOR THE
ANALOG RESOURCE BETWEEN OCCURRENCE OF A TASK BETWEEN
TIMES TBEGIN AND TEND TIMES TBEGIN AND TEND
\ 4

FIGURE
8.3b

FIGURE 8.3a - FLOW DIAGRAM FOR THE HORIZONTAL PLOT GENERATION AREA
PART 1: DATA COLLECTION

9

I STORE TITLE: CALL PLTITL {TITLE)]

v

l INHIBIT X AXIS GRID: CALL PLTDEN (‘'TIME’, 0) —l

INHIBIT ¥ AXIS GRID: CALL PLTDEN (HDEP {4,1),0)

v

ESTABLISH Y AXIS SCALE: CALL PLTICS {HDEP (J, 1}, 0.0, 100.0) |

TU = TBEGIN

l PRINT OUT ALL COLLECTED DATA POINTS [

I SET - FRAMES = (TBEGIN - TENDI/RPF ‘]

CYCLE FOR EACH FRAME

TL=TU
TU=TU + RPF

SUPERIMPOSE THE FOLLOWING GRAPHS
ON THE SAME AXES: CALL PLTSIM (1}

ESTABLISH X AXIS SCALE: CALL PLTICS (‘TIME’, TL, TU)

WRITE NAME OF Jth VARIABLE
IN THE LEFT MARGIN: CALL ABTITL

v

PLOT DATA POINTS FOR THE Jth
VARIABLE: CALL QXY{HIND, HDEP {J, 1)}

IS
THE Jth VARIABLE
A BINARY COMMITMENT
TABLE

ITERATE FOR ALL TABLE ENTRIES BETWEEN TIMES
[TL AND FU l

ENTRY FROM THE WA ARRAY

I v l
I L WRITE TASK NAME: CALL ABPRIN T |

| L RETRIEVE TASK NAME OF THE 1th 1 I

ITERATE J FROM 7 TO NDEP

HIND = ‘TIME’ + J1

L REMOVE TABLE OF DATA POINTS: CALL CULOUT (HIND)

v

REMOVE TABLE OF DATA POINTS: CALL CULOUT (HDEP (J, 1} l

HDEP (J, 1} =0

RETURN

FIGURE 8.3b - FLOW DIAGRAM FOR THE HORIZONTAL PLOT GENERATION AREA
PART 2. GENERATIONS OF PLOT INSTURCTIONS

BELLCOMM, INC. 8-11

The lower and upper ordinate limits for each variable are
calculated from the values of h and d and are entered in
successive locations in Arrays LOWER and UPPER respectively.
Thereafter, the kth variable in Array HDEP will have the
ordinate limits LOWER(K) and UPPER(K).

The variables named in Array HDEP may be one of
three types: a binary resource (including ephemeris), an
analog resource, or a specific task. The names of the
binary and analog resources must be specified exactly as
they appear in Array LTABLE while the task name must be
specified exactly as it appears in Array ORDER. As Fig-
ure 8.3a shows, the method of collecting data points
depends upon the type of variable.

8.3.1.1 Collection of Data Points for a Binary Variable

The collection of data points for a binary
variable is facilitated by the nature of the data itself,
i.e., that it has only two states, 'off' and 'on'. The
meaning of these states for each type of binary wvariable
is shown in Table 8.1. On the horizontal plots, the 'off!
state for each variable is plotted at the lower end of its
ordinate range and the 'on' state at the high end of its
range. Thus, in Figure 3.2b, the task LUNCHA occurs between
2.95 and 3.0 days and crewman CREWA is shown committed to
that task over the same length of time.

Each entry in a binary commitment table (Tables
3.1 and 3.2a) is represented graphically by four data points
as shown in Figure 8.4. The coordinates of all four points
must be collected and stored in the sequence in which they
occur. Thus, the sequence of call statements to store the
ith entry in the table would be

CALL COLECT (HIND, til)
Point 1
CALL COLECT(HDEP(K,l),LOWER(K))

CALL COLECT (HIND, t,)
Point 2
CALL COLECT (HDEP (K,1) ,UPPER (K))
{fCALL COLECT (HIND, t,)
L

CALL COLECT (HDEP (K,1) ,UPPER(K))

BELLCOMM, INC. 8-12

Table 8.1

Interpretation of Binary Variable States

Variable Type OFF
Binary Resource Table Uncommitted
Ephemeris Resource Table Unavailable
Task Performance Performance

not

Occurring

ON

Committed

Available

Performance
Occurring

"378VL INJWLINWOD AHVNIS V NI AHLNI yi! 3HL 40 NOILVINISIHIIH TVIIHIVHD — #'8 FUNOIL

e X

AN L

— = = ()} HIMOT

|O_V_.

r

8-13

MG\f

@lllll — = = () H3ddN
z

BELLCOMM, INC. 8

14

CALL COLECT (HIND, ti2)
Point 4
CALL COLECT (HDEP (K,1) ,LOWER(K)).

As described above, the coordinates are stored in
tables tagged with the variable name. During the execution
of Phase 2, the coordinates of the point are retrieved by
pairing successive entries in the appropriate tables. The
coordinates are scaled, the point is plotted, and a line is
drawn between successive points.

As noted above, the graphs are generated frame-by-
frame, with the data range per frame (FORTRAN variable RPF)
being specified by the user. 1In order to provide continuity
between frames, the real data point corresponding to the
rightmost end of the display area (line X=R in Figure 8.1)
must be collected in the proper sequence along with the
appropriate ordinate value. The abscissa value of the
corresponding data point changes from frame to frame. However,
the value is always known by first initializing the FORTRAN
variable TLIMIT to RPF and then incrementing TLIMIT by RPF
whenever the value of either endpoint in the table entry
exceeds the current value of TLIMIT. When this occurs, the
current value of TLIMIT is collected, along with the appro-
priate ordinate value, just prior to its being incremented.
This cycle of collection and incrementation is repeated as
many times as necessary until the next data point to be
collected has a value of time less than the value of TLIMIT.

The two possibilities are illustrated in Figure 8.5.
In Figure 8.5a, the ith and i+l entries appear on either side

of the current value of timit indicating that they must

appear in different frames. Therefore, the coordinates
(tlimit’ LOWER(K)) would be collected just prior to collecting

the data points for the i+l entry. In Figure 8.5b, the ith
entry would bridge two adjacent frames and so the coordinates
(tlimit' UPPER(K)) would be collected between the collection

of points 2 and 3.

As shown in Figure 8.3a, a complete set of data
points is collected for each variable in turn. TLIMIT is
reinitialized to RPF immediately preceding the collection
of each new set of points.

8-15

Z (L4,

‘SIWVH4 NIIM138 ALINNILNOD 3AIAOHd O1 SINIOdAN3 V1va 40 NOILO31102 — 68 3HNOIA

X

SIWVYH INIIVIAV DNIDAIYE AHLNI W (9

z, nwn, TN

IIA.U @| ||||||||| (1) HIMO1

o—d B N T

_ SINVHI LNIHIAH1a NI STIYLNIT L+ ANV Y (e

L), g, LA iy

0 ' Y
| i

m-v k/o_v Jo T (1) 4amo1
L v L

® mov moVIII — — (N)y3ddn

4 € 4

BELLCOMM, INC. 8-16

8.3.1.2 Collection of Data Points for an Analog Resource

The graphical representation of the analog resource
table in Table 3.2b is shown in Figure 8.6. The ith entry

in the table can be represented by two data points_Ttil, R(i—l)2)
and (til’ Riz) in that order. The coordinates of these points

are collected and stored by the call statements

CALL COLECT (HIND, til)

CALL COLECT (HDEP(K,1l), S(R(i—l)2))

CALL COLECT (HIND, til)

CALL COLECT (HDEP(X,1), s(R,,))

where s is a scale factor that scales the ordinate to a value
between LOWER(K) and UPPER(K). The scale factor is determined
by first scanning all of the entries to be plotted to find RL,

the largest value of RiZ’ and then calculating s from the
relation

- UPPER(K) -LOWER (K)

R

The remaining methodology is the same as for a
binary resource. Thus, the points are processed in Phase 2
by pairing successive entries in the appropriate data tables
to form a data point. The coordinates of the point are
scaled, the point is plotted, and successive points are
connected with a straight line.

Continuity between frames is also maintained in
the same way as for the binary resources. Thus, when t(i—l)l
limit’
S(R(i-l)z) is collected and the value of TLIMIT is incremented

and til appear in different frames the data point (t

by RPF. Again, the cycle of collection and incrementation is
continued until t,.<t.. .. .
il—"limit

8-17

‘379vL INFJWLINNOD D0TVYNY NV 40 NOILVINIS3IHdIY TVIIHIVHO — 9°8 3HNOIH

1) 43IMmo1

N~N|$Iw

(L)

2y

Tys

{3) "43ddn

BELLCOMM, INC. 8-18

8.3.1.3 Collection of Data Points to Represent
the Performance of a Task

As noted in Table 8.1, task performances are also
considered binary resources and, as such, are also represented
graphically by four data points as shown in Figure 8.4. 1In
this case, however, til and ti2 are the beginning and end of

the task performance, i.e., the earliest beginning of a resource
(FORTRAN variable BEGIN) requirement and the latest end time

of a resource requirement (FORTRAN variable END). When task
occurrences are to be plotted, the Descriptor List for the

task is read from the peripheral files and searched to determine
the endpoints relative to the arbitrary task start-time. The
variables BEGIN and END are determined for each task performance
by adding the task start-time to the lower and upper endpoints
determined from the task description. As described in Section
7.1, these start-times are in a list whose address is stored

in the appropriate entry in the ORDER Array. Once determined,
the data points for each performance are collected in the
manner described in Section 8.3.1.1.

8.3.2 Plotting of the Horizontal Graphs

The flow diagram for the portion of Subroutine HPLOT
concerned with plotting the data is shown in Figure 8.3b. As
mentioned above, "plotting" consists of placing a series of
instructions on the IOPLT file and, since the graphs must be
generated frame-by-frame, the entire series of instructions
must be repeated for every frame. The only exceptions are the
instructions for grid backgrounds, labeling information, and
ordinate scaling. They are issued only once for each plot
since they do not change from frame to frame.

The first step in the instruction cycle is to
establish the lower and upper data limits (FORTRAN variables
TL and TU respectively) for the X axis. A call to AUPLOT
Subroutine PLTSIM sets a flag which indicates that subsequent
graphs are to be overlayed. Thereafter, all plot instructions
issued between successive calls to Subroutine PLTSIM will
produce graphs and labels on the same frame.

Plotting instructions are generated by successive
calls to AUPLOT Subroutine QXY. Each call instructs that all
data points between TL and TU for the variables named in the
call statement be plotted on the display area. In addition,
if the Y axis variable is a binary resource, the name of each
task to which the resource is committed is retrieved from the

BELLCOMM, INC. 8-19

WA Array and is printed in the box representing that commit-
ment. Before proceeding to the next frame, the scale marks,
accompanying data values, and X axis labels are printed at
the bottom of the frame. The scale marks are inserted at the
endpoints of the display area and at seven equally spaced
points in between.

When instructions for all of the frames have been
completed, a series of instructions is issued to free each
of the variable names for reuse. The statement

CALL CULOUT ('NAME')

causes the data tables for the variable 'NAME' to be erased
from storage during the execution of Phase 2. These instruc-
tions will be processed in Phase 2 after the plots have been
created and therefore will not affect their generation. New
data tables with the same tag names can be placed on the IOPLT
file subsequent to these instructions with no possibility of
ambiguities with previous data.

8.4 Vertical Plot Generation Area

The vertical plots (Figure 3.3b) are used to
highlight cyclic variations in the data as well as the
interrelationships between different variables. Only binary
variables, as defined by Table 8.1, may be plotted on a
vertical plot; analog variables will be rejected.

Comparison of Figures 3.2b and 3.3b shows several
significant differences between the horizontal and vertical
plot formats. On the horizontal plots, the data for each
variable is plotted over a different ordinate range so that
the graphs never overlap. In contrast, the ordinate range
on the vertical plots is the same for all variables over a
given time period thus guaranteeing that the graphs of the
different variables will overlap and so emphasize their
interrelations. 1In order to differentiate between the differ-
ent variables, each is plotted with a unique symbol or
character. A variable may either be plotted as a box or
a point. The box represents the duration of the 'on' state-
and is coded by shading for identification. A variable may
also be plotted as a point. The point represents the

BELLCOMM, INC. 8-20

mid-point of the 'on' state for that variable.* As noted
above, the user designates via the input data how each
variable is to be plotted. The occurrence of those vari-
ables named in Array VSHADE will appear as shaded boxes
while the occurrence of those designated in Array VPOINT
will appear as points. The program selects unigque symbols
for each variable and prints out a legend (Figure 3.3a)
defining these symbols before each plot.

Since the vertical plots use approximately the
same ordinate range as one dependent variable on a hori-
zontal plot, a large portion of the display area would
remain blank when the graphs of the variables are over-
layed. This blank space can be utilized however, by
plotting successive time intervals one under the other.

This format not only utilizes the entire display area

(which reduces the number of frames required for the plots),
but also increases the effectiveness of the display.

Finally, in order to improve the continuity between frames,
the axes for the independent variable and dependent vari-
ables are reversed, i.e., time is plotted along the ordinate
(Y axis) and the variable states along the abscissa (X axis).

The resulting vertical graph in Figure 3.3b

shows intervals of equal duration plotted along the Y axis.
The value of time represented by the lower endpoint of each
interval is shown adjacent to that endpoint. Note that the
abscissa values representing the two states 'off' and 'on'
are constant for any one interval but differ for different
intervals, thus preventing the graphs of different variables
from overlapping.

The flow diagrams for the vertical plot generation
area (Subroutine VPLOT) are shown in Figures 8. a, b, and c.
The logical flow follows the basic two-step plot construction
process used for the horizontal plot area and so the flow
diagrams for the two areas are quite similar.

8.4.1 Data Collection and Storage

The flow diagram for the collection and storage
of data for vertical plots is shown in Figure 8.7a. Before
any data points can be collected, the abscissa limits for
each time interval on the frame must be established so that

*ror task o©
-~ L)
time of the task.

8-21

SUBROUTINE VPLOT

ESTABLISH ABSCISSA LIMITS FOR EACH
TIME INTERVAL ON A FRAME

=
I ITERATE J FROM 170 3 |
I |
4+ YES FsHaDE 0w=0 |
I NO I
{ [[VDEP i, 1) = VSHADE W) | I
\. T —_——— _——— -4
NSHADE = J-1
I [
I I
! !
|
P ! YES I
< } I
| f
I VDEP (L, 1) = VFOINT (K} :
VDEP (L, 2) = K
[[nop-11] e —— _J
—>

YES

<ANALOG VARIABLE>

CALL SUBROUTINE LEGEND TO
COLLECT POINTS AND GENERATE
PLOT INSTRUCTIONS FOR THE LEGEND

COLLECT DATA POINTS FOR ALL VARIABLES
ITERATE 4 FROM 1 TO NDEP

[HIND = TIME" + J1
|__TLIMIT = TBEGIN + RPL

MATCH NAMES IN VDEP {J, 1) TO
A NAME IN THE LTABLE ARRAY

MATCH NAME IN VDEP {J, 1) TO]
A NAME IN THE ORDER ARRAY

SOURCE BETWEEN TIMES TBEGIN AND TEND

VDEP (J, 2) = -1

<EERFORMANCES BEEN SCHEDULED

ICOLLECT DATA POINTS FOR THE OCCURRENC

OF A TASK BETWEEN TIMES TBEGIN AND TEN;I
J

ERROR EXIT '

FIGURE 8.7a — FLOW DIAGRAM FOR THE VERTICAL PLOT GENERATION AREA
PART 1: DATA COLLECTION

I
I
I
I
I
I
I
I
I
I
I
| COLLECT DATA POINTS FOR A BINARY RE-—]
|
I
I
|
I
I
!
I
|
|

FIGURE
8.7b

ERROR EXIT

8-22

VIND = 'TIME"

| STORE GRAPH TITLE: CALL PLTITL (TITLE} J

v

INHIBIT ¥ AXIS GRID: CALL PLTDEN (VIND, 0)
INHIBIT X AX1S GRID: CALL PLTDEN (VDEP (1, 1), 0}

v

LESTABLISH Y AXIS SCALE: CALL PLTICS {VDEP (1, 1}, 0.0, 100.0) I

¥

LINE=0
TU = TBEGIN

v

I SET PHASE 2 SHADING FLAGS]

b

KDUMP =1

NO

YES

LDUMP ALL COLLECTED DATA POINTS

le
NO
UNIT = 1.0
RPL > 60.0
YUNITS = ‘MIN®
YES
NO
UNIT = 60.0
RPL >>1440.
YUNITS = ‘HRS' 1>14400
YES
UNITS = 1440.0
YUNITS = ‘DAYS’
al
g

SELECT THE NUMBER OF GRID INTERVALS
AND GRIDMARKS FOR THE Y AXIS

v

BEGIN A NEW FRAME AND SUPERIMPOSE THE FOLLOWING
GRAPHS ON THE SAME SET OF AXES: CALL PLTSIM (1}

—

i]

TL=TU
TU=TU+RPL

YES
TL>TEND
NO

DEFINE Y AXIS SCALE FACTORS FOR
LIMITS TL AND TU: CALL ABLIM

LINE = LINE +1

YES

BEGIN A NEW FRAME AND SU
GRAPHS ON THE SAME SET OF AXES: CALL PLTSIM (1}

LINE<LPF >
SUPERIMPCSE THE FOLLOWING

FIGURE 8.7b — FLOW DIAGRAM FOR THE VERTICAL PLOT GENERATION AREA

PART 2: GENERATION OF PLOT INSTRUCTIONS

La

B
FIGURE
8.7c

|

ITERATE J FROM 1 TO NDEP

TIME’ + J-1

I ESTABLISH PLOT SYMBOL: CALL PLCHAR (VDEP {J, ZlTl

PLOT DATA POINTS FOR THE Jth
VARIABLE: CALL QXY (VDEP {4, 13, VIND)

e—
¢

|
[
!
[
l
|

I

l
:
I v
|
I
I
[

YES
LINE>1

NO

PLOT Y AXIS SCALE AND GRID
IN THE LEFTMOST MARGIN

v

LABEL Y AXIS UNITS IN THE LEFTMOST MARGIN 1

l LABEL X AXIS UNITS tN THE BOTTOM MARGIN

le—

v

WRITE VALUE OF LOWER TIME INTERVAL
ENDPOINT IN THE BOTTOM MARGIN

B
FIGURE
8.7b

f

NO

T |

ITERATE J FROM 1 TO NDEP

HIND = ‘TIME" +J -1

LREMOVE TABLE OF DATA POINTS: CALL CULOUT (HIND) l

I

| |
| I
I |
I ¥ I
' |
I

| I
I |

REMOVE TABLE OF DATA POINTS: CALL CULOUT (VDEP {J, 1})]

v

VOEP .11 =0
VDEP {J.2)=0

L e —_
R

ITERATE J FROM 1TO 3 l

VSHADE (J) |
ITERATE J FROM 1 TO 15

VPOINT () =0 l

e ——

r——7 r——"
|

RETURN

FIGURE 8.7c — FLOW DIAGRAM FOR THE VERTICAL PLOT GENERATION AREA
PART 2: GENERATION OF PLOT INSTUCTIONS {CONTtNUED}

e}
1

BELLCOMM, INC. 24

they do not overlap. The number of time intervals (or
lines) to be plotted on one frame is specified in the
NAMELIST input. Using an arbitrary abscissa scale of 0.0
to 100.0, the spacing between each interval is defined as

w = 100/L

and the abscissa range for each interval is defined as

h =w/3,

where

L = number of lines per frame (FORTRAN
variable LPF)

w = abscissa spacing between successive
time intervals (FORTRAN variable IWIDTH)

h = abscissa range for each time interval
(FORTRAN variable HEIGHT).

The lower and upper abscissa scale limits for each time
interval are calculated from the values of h and w and are
entered in columns one and two respectively of Array HLIMIT.
Thereafter, all data for the ith time interval (FORTRAN
variable LINE) on every frame will be plotted between the
limits HLIMIT (LINE,l) and HLIMIT (LINE,2).

As with the horizontal plots, any binary resources
named in Arrays VSHADE and VPOINT must be specified exactly
as they appear in Array LTABLE while each task named in the
input arrays must be specified exactly as it appears in the
ORDER Array. As shown in Figure 8.7a, the names in both
arrays are transferred to sequential locations in the first
column of Array VDEP as they are counted. The input
sequence number is entered in the corresponding second
column for those entries that appear in Array VPOINT. The
method of data collection and plotting for each variable
is determined by the contents of this second column. A zero
entry specifies that the data is to be collected and plotted
as a box while a non-zero entry stipulates that the data is
to be collected and plotted as a point.

BELLCOMM, INC. 8-25

8.4.1.1 Collection of Data Points to Represent
Binary Variables as Shaded Boxes

When a binary variable (i.e., binary resource
table, binary ephemeris table, or the occurrence of a task)
is to be plotted as a shaded box (Figure 3.3), the 'on' state
for the variable is represented by four data points as shown
in Figure 8.8. This representation is identical to the one
shown in Figure 8.4 for the horizontal plots except for the

orientation of the axes. In this case, til and ti2 again

represent the endpoints of the 'on' state; however, the

'off' and 'on' states are now represented by the two abscissa
values HLIMIT(LINE,2) and HLIMIT(LINE,1) respectively. A
The sequence of call statements to collect these data points

is the same as those shown above in Section 8.3.1.1.

Continuity is maintained between successive time
intervals in the same manner as it is maintained between
successive frames for the horizontal plots. The user
specifies the range of the time interval (FORTRAN variable
RPL) . For each variable, TLIMIT is initialized to RPL and
is then incremented by RPL whenever the value of either
endpoint, til or ti2’ exceeds the current value of TLIMIT.

The value of LINE, the time interval counter, is also incremented
but its value is reset to one whenever it exceeds the value

of LPF, the number of intervals to be plotted on one frame.

In addition, when it is the value of ti2 that exceeds the

value of TLIMIT, the value of TLIMIT is collected along with
the appropriate abscissa, HLIMIT(LINE,1l), thus providing
continuity of data between successive time intervals. Note
that this method of maintaining continuity permits the user
two degrees of control over the output graph: the length

of the time interval (RPL) and the number of intervals to be
placed on one frame (LPF).

The meaning of the 'on' state for the different
types of variables is the same as for the horizontal ‘plots
(Table 8.1). The endpoints of the 'on' state (til and tio

in Figure 8.8) for a binary resource or binary ephemeris
table are the pair of points comprising one entry in the
table. For an occurrence of a task, the endpoints represent
the beginning and end of a performance. The method of
determining these endpoints for a task occurrence is
described in Section 8.3.1.3.

'107d TVIILHIA V HO4 31ViS.NO, IHL 40 NOILYLINISIH4IH TVIIHIVHO — 8’8 34NOI4

—— A

1y

{2 "3NIT) LIWITH

8-26
ﬁl——-—- =
T—)

> OO
(L “3INIT) LINWITH

BELLCOMM, INC. 8-27

8.4.1.2 Collection of Data Points to Represent
Binary Variables as Points

As noted above, when the 'on' state of a binary
resource or ephemeris variable is plotted as a point, that
point represents the midpoint of the 'on' state and is
calculated from the relation

tooint = ti17(t5p ~t51)/2.0 .

For a task occurrence, however, the point represents the
actual start-time of the task. In either case, the state
is represented by a single data point (tpoint'x) where

X = HLIMIT(LINE,2) -HEIGHT/2.0

8.4.2 Plotting of Vertical Graphs

The flow diagram for the portion of Subroutine
VPLOT concerned with placing the plot instructions on the
IOPLT file is shown in Figure 8.7b. Like the horizontal
plots, the vertical plots must be generated frame-by-frame
and therefore the entire set of plot instructions must be
repeated for every frame. Again, the exceptions are the
calculations and instructions for grid backgrounds, labeling
information, and scaling which do not change and therefore
need to be specified only once.

The scale marks and accompanying units that are
inserted along the Y axis are the same for each frame. Hence,
though instructions must be issued once each frame to write
them on the frame, the calculations to select the proper scale
are performed only once before the plot instruction cycle
begins. The program selects scale marks at the endpoints
of the display area and at regular intervals in between.

The scale units (i.e., days, hours, or minutes) are selected
on the basis of the size of RPL. The program then selects
the maximum number of grid intervals (and hence the number
of interim scale marks) for which the remainder of

BELLCOMM, INC. 8-28

where
r; — range per line (FORTRAN variable RPL)

u - scale units

n - number of intervals

is zero above two decimal places. A maximum of six intervals
is permitted and n will be set to six if this requirement
cannot be met.

The instruction cycle for the vertical plots is
very similar to its horizontal counterpart (Figure 8.3b).
Plotting instructions are again generated by successive calls
to Subroutine QXY which specify that all data points between
the lower and upper data limits (TL and TU respectively) are
plotted on the display area. In order to produce the desired
format, these factors must be redefined for each time interval
rather than for each frame. Hence, in the basic instruction
cycle, TL and TU are incremented by RPL, the scaling factors
are redefined, and plot instructions are issued for each
variable.

The value of the time interval counter LINE is
incremented by one whenever TL and TU are redefined, and it
is reset to one whenever its value exceeds the designated
number of lines per frame (LPF). Labeling instructions for
both the horizontal and vertical axes are issued whenever
LINE is equal to one.

Each call to Subroutine QXY results in a call to
Subroutine PLTXYQ in Phase 2 of AUPLOT. The subroutine will
either plot the data as individual points or as a continuous
curve depending upon the value of Flag IPCHAR which in turn
is set by the call to Subroutine PLCHAR in Phase 1. If the
value of IPCHAR is zero, the data will be plotted as a
continuous curve. If the value of the flag is equal to
I(I>0), the data is plotted as individual points using the
Ith symbol in a table of symbols set aside for that purpose.

As noted above, Subroutine PLTXYQ was modified to
permit the generation of shading instructions. However, a
number of variables used in Subroutine VPLOT are needed to
generate these instructions. The value of the required
variables are transferred to Phase 2 by separate calls to
Subroutine AUFLAG. The statement

&3S

BELLCOMM, INC. 8-29

places the current value of FORTRAN variable VALUE on the
IOPLT file. When the instruction is read during the execu-
tion of Phase 2, this value will be placed in the Ith
location of Array IEXTRA. The array contains 15 locations
which are not used in the standard version of AUPLOT and
hence can be used for special purposes through the Phase 2
COMMON structure. The values of all Phase 1 variables

required by Subroutine PLTXYQ are input to the subroutine
in this manner.

BELLCOMM, INC.

9.0 The ATS Job Decks

Each of the ATS programs is designed to run in
the batch mode on the UNIVAC 1108 computer operating under
the EXEC 8 multi-processing system. The user describes a
run via a job deck, i.e., a single deck of punched cards
containing all of the system instructions and input data
needed to use a particular program. Sections 9.1 - 9.3
describe the job deck for each of the ATS programs. The
descriptions assume a familiarity with the UNIVAC 1108
control statements and the NAMELIST input/output package.
A complete description of the control statements can be
found in Reference 13 and a description of the NAMELIST
software package can be found in Reference 14.

9.1 Job Deck for the Data Bank Generator

A sample job deck for the ATS Data Bank Generator
is shown in Table 9.1. Four files must be assigned for the
duration of the run. The first is the program file
ATS*SCHEDULER which is stored on FASTRAND and contains the
Data Bank Generator absolute element BNKMAP. The file
containing the Data Bank itself is designated by the user.
It may be stored either on FASTRAND (the case shown) or on
magnetic tape. In either case the file must be assigned to
logical unit 2. Finally, two auxiliary storage files, TASKANNOT
and TASKDESCR, are used to store the task annotation and
description lists. These files must be stored on fast drum or
FASTRAND to permit random access (Section 5.3.2) and must
be assigned to logical units 1 and 3 respectively. Note that
all files shown in Table 9.1 have the qualifier ATS as speci-
fied in the third field of the RUN card.

Only two variables are included in the NAMELIST
statement, flags NEW and NOLIST. As shown in Figure 6.2,
the value of NEW indicates whether an existing data bank is
to be modified (NEW=0) or a completely new bank is to be
created (NEW=1l). Similarly, the value of NOLIST indicates
whether the tasks in the bank are to be printed out as they
are stored (NOLIST=0) or if that printing is to be suppressed
(NOLIST=1). Since the values of both variables are initialized
to zero at the start of the execution, they need only appear
in the data deck if they are to be set equal to 1. The task
description cards are placed after the NAMELIST data subject
to the sequence rules discussed in Section 4.5.

BELLCOMM, INC.

Job Deck for the ATS Data Bank Generator

Table 9.1

@RUN
@HDG
@ASG,A
@ASG,T
@USE
@ASG, T
@QUSE
@ASG,A
@QUSE
@XQT

$INPUT

SEND

LAST

@FIN

ABBJOB, ABB, ATS, 30,

JOB DECK FOR ATS DATA BANK GENERATOR

SCHEDULER
TASKANNOT, F
1,TASKANNOT
TSKDESCR,F
3,TASKDESCR
DATABANK

2 ,DATABANK

ATS*SCHEDULEReBNKMAP

[NAMELIST Variables]

[Task Description Cards]

BELLCOMM, INC. 9-3

9.2 Job Deck for the Schedule Generator

A sample job deck for the ATS Schedule Generator
is shown in Table 9.2. The structure of the deck is the
same as that used for the Data Bank Generator. In this
case however, the number of files assigned for the duration
of the run depends upon the program options desired by the
user. A minimum of three files must be assigned: the
program file ATSx*SCHEDULER containing the Schedule Generator
absolute element SCDMAP and the two drum files, TASKANNOT
and TASKDESCR, which will be used during the run to store the
task Annotation and Descriptor Lists.

Each of the four remaining files need be assigned
only if the option associated with that file is desired.
If a data bank is to be used, the file containing the bank
is assigned to logical unit 2. Similarly, if ephemeris
information is to be input, the file containing that
information is assigned to logical unit 4, or if the
Schedule Generator is to be initialized from a History Tape,
that tape is assigned to logical unit 8. Finally if a new
History Tape is to be made, the output tape is assigned to
logical unit 9. Although all of these optional files are
shown as tape files in Table 9.2, any or all may be assigned
as FASTRAND files.

The NAMELIST statement for the Schedule Generator
contains the names of the 14 variables defined in Table 9.3.
A subset of these variables must be specified for each run
but the variables included in that subset depend upon the
method of initialization and the program options to be exer-
cised. Table 9.4 illustrates all of the data options available
when a completely new schedule is to be generated while
Table 9.5 illustrates the available options when a partial
schedule is to be completed. As mentioned above, a variable
need only be specified in an input data deck when the desired
value is something other than zero.

9.2.1 Input Data to Generate a Completely New Schedule

When a completely new schedule is to be generated,
the specification of all of the variables shown in Table 9.4
is optional with the exception of the variable TOTIME. 1In
two cases, however, the ephemeris data option and the Data
Bank option, the user must select an option from a subgroup
of alternatives.

BELLCOMM. INC. 9-4

Table 9.2

Job Deck for the ATS Schedule Generator

@RUN ATSJOB, ABB, ATS, 30, 200

QHDG JOB DECK FOR THE ATS SCHEDULE GENERATOR

@ASG,A SCHEDULER

@ASG, T TASKANNOT. ,F

@QUSE 1, TASKANNOT

@QASG, T TASKDESCR. ,F

@QUSE 3, TASKDESCR

@ASG,TM 2,T,XXXX (assign Data Bank tape and relate
it to logical unit 2)*

@ASG,TM 4,T,xXXXX (assign ephemeris tape and relate
it to logical unit 4)*

@ASG,TM 8,T,XxXXX (assign input History Tape and
relate it to logical unit 8)*

@QASG,TM 9,T,xxxxR (assign output History Tape and
relate it to logical unit 9)*

@xQT ATS*SCHEDULERe SCDMAP

SINPUT

[NAMELIST Variables]
SEND

[Task Description Cards]
LAST

@FIN

*Note: xxxx denotes the reel number of the particular
magnetic tape.

Table 9.3

Variables Included in the Schedule Generator NAMELIST Statement

FORTRAN

Variable Dimension Data Format Definition

GDATE (3) (1) Hollerith Gregorian date of launch as recorded on
(2) Integer the ephemeris data file.*
(3) Integer

IEPHEM (1) Integer Ephemeris data flag, 0: included, 1l: not
included.

IGNORE (200) Hollerith Array containing the names of the tasks
whose descriptions are not to be trans-
ferred from the Permanent Data Bank.

INCLUD (200) Hollerith Array containing the names of the tasks
whose descriptions are to be obtained
from the Permanent Data Bank.

IPRINT (1) Integer Print Frequency Flag.

IPRIOR (1) Integer Priority Level Indicator.

ITABLE (1) Integer Start-time window table flag, 0:NO, 1:YES.

ITAPE (1) Integer History Tape output flag, 0:YES, 1:NO.

NCRENT (1) Integer Maximum number of entries in each crew
commitment table.

NEWCOM (3,20) (1,X) Hollerith Array containing the name, type, and

(2,X) Integer maximum # of permissible entries of every
(3,X) Integer required resource commitment table except
those for crewmen (maximum of 17).

NEWCRW (2,5) Hollerith Array containing the name and associated
skill of each crewman (maximum of 5).

NEWDAT (3,10) (1,X) Hollerith Array containing the name, initial

(2,X) Floating Point quantity, and maximum usage rate of each
(3,X) Floating Point consumable (maximum of 10).

TIMEL (1) Floating Point KSC time of launch as recorded on the
ephemeris data file (hours)

TOTIME (1) Floating Point Total mission time (days).

*The date is entered as a three-tuple.

The first element contains one of the standard three

letter codes for the month, the second element contains a one or two digit integer specifying the
day of the month, and the third element contains a four digit integer specifying the year. An

example is shown in Table 9.4,

‘po3jexsuab oq TTIM =de] Ax03sTH 3ndino ON

‘unx

STU3l I0J posn aq TIIM ueg ejed jusuewrsd ON
*jueg ealed

juauewrad 9yl woxy poatdoo oq TTTIM partjyroads
9soy3z 3dsoxs sysel Tre Jo suor3zdrIossag

‘po1dod aq TTITM 3ueg eied
jusuewiad 8yl UT S3YsSe3l [Ie JO suoT3zdTrIaonsag

*jueg ejeq jusuewrad oYz woxy psatdod
9q TTTm syse3l parjToads ayjl Jo suor3zdraosaqg

*odel sTaswsyde SIV 9Y3 UO PSUTEIUOD Younet
JOo swr3l DSM puUR B3P 9Y3l YITM TeDTIUSPT
°1® 3'yUl THWIL PU® HIVAD JO s8nieA 9y

‘posn 2 30U TITM ode3 stasweyds uy

*sfep (°9Z se uoTjeINp UOTSSTW 8yl KAyrtoads

o o o \—MVHWAN—H.— 4

. e s-UVHma—H_- 4

T=3dYILI

uot3do odey Ax103STH

fVTIY, = TIONDI P
X0

(XASYL, ! MMSYL, = MIONODI O
X0

4TIV, = dNIONI °q
I0

 ISVEL, ‘ ¥MSYL, = QATONI °®

(suo A3y1oadg) suoT3zd(Q jueg eieq

‘€8S PT=TAWIL

q
4 100, =3I¥AD

‘zZL6T ‘9T
I0

‘T=WHH4II -®

(ouo A3ytoadg) suor3idQ sTtasweydyg

‘0°97 = AWILOL

QWT], UOTSSTW [e305 AJtooads

9INPAYDS MAN B JO UOT3IRISUSH BY3 IOF SuotTledrytrooads e3zed LSITAWYN

7°6 ®Tqedl

*pojutad aq O3 ST SMOPUTIM SwIl
-3I1e3S JO uOT3IRIAINP ©Y3l DBurmoys a1qel ¥

*SToA9T
K3t1aotrad anogy Axsae 3no pojutTad oq 03 axe
SoTgel JUSWITUWOD 9DINOSSX 9Yl JO TIVY

*0°000p JO obvx abesn umwixew

e pue (0°(Q Aq pojeubrsop) STqerIrAR
Junowe patyroadsun e sey YAMOd *(0°0
Aq pojeubrsop) o3ex obesn paryroadsun
ue pue SsTqefTRA® 0°(000S FO JFunowe Tet3
-TUT Ue SPY NIADAXXO °po)oeI3 oq 03 oIe
YAMOd pu®e NADAX(O paWeu S2TqRumsuod oMmJ,

*S9TIIUD (0F
JO umuwTxXew ® pa33jTwiad 91t USWMSID
1T I03F SOTge3} IUSWRTWWOD IDINOSSY

*Y0ID0d JO TTITHS Syl

poubTsse aq TTTM OMIMYD UewmaId !TTTYS
0T13Toods ou @AY TITM OMIYD URWMSID
*payYsSTTqe3s® oq O3 9Ie GMHYD PUR DMEID
UDUMDIO IOJF SOTCe} IJUDWRTUWOD 90INOSIY

*S9TIJUD
0GT JO UmMWTIXew ® Y3TM POYSTTQe3ISe

8q 03 ST ¥AMOd pa@weu 20Inosax Horeue
ue I0J 9Tge3l IUSDWITUMIOD 9DINOS3I Y

(p,3uo0d)

T=A79VLI

'p=INIIAI

suU0T3d0 3UTad

‘0°000% ‘0°0 ‘.,¥AMOA,
‘0°0 ‘0°000S ‘,NIDAXO, = ILVAMAN

S3TWIT 9TCRUMSUOD SuTFadg

‘00€ = LNZMON
‘ _mo—H.UOQ : ! i OMHEID 1 ! ' mzoz. / ' QBWNHO_ = MYOMAN
‘7 ‘0ST ‘Y .¥EMOd, = WODMAN

SaTde] IUuBu TUwWOD =0INO0Say auTI=(d

76 °Tded

*pejutad
9q 03 ST SMOPUTIM SWTI3-3IB1S
JO uoTjeanp 9yl buTmoys aTde3 ¥

*sToasT KA3taotad Inoy Aasao
ano psjutad agq 03 oI saTgel
Juaul TUOD 30INOSSI Y3} JO TV

*pa3evasuab
8q TT1TI# 9deg Axo3sTH 3ndino ON

*IT 03 Tenbe

KAytaotad e butaey sysel yilIm

sutbaq ssodoxd HUITNPIYDS SBYIL
*pPOISPTISUOD UsS9(q 9ArY ToaA9T AjTaotad
yjusy 9y3 e sisel syzx jo TT®

I933e snjels ITOUl O3 SoTgel TI®
9ZTTPTI3TUT 03 odey Axo3sTH anduTt
9Uy3 woxj paoosx sjeTadoadde pesy

dTIIVYLI

—
I

17 INTHdT

suoT3dQ JIUTIJ

‘T = H4V¥LI

uoT3dQ odeJ AIOJISTH

‘0T = 901ddI

12497 A3TI0oTad AJ1o9dsg

STnpsyos 1eraled e o3o1dwo) 03 suoT3zedor3yToeds eled LSITANYN

S°6 STd®BdL

BELLCOMM, INC. 9-9

9.2.1.1 Ephemeris Data Option

If no ephemeris data is to be input, the flag
IEPHEM is set equal to one. Conversely, if a file containing
ephemeris data is to be input, the variables GDATE and TIMEL
must be specified exactly as they appear on that file. If
either or both of these variables do not match their counter-
parts on the ephemeris data file, the run will terminate in
an error message (Appendix A - Section A.2.8.1).

9.2.1.2 Data Bank Option

Four data bank options are provided to minimize
the number of individual task names that have to be specified
in the data deck. Normally, array INCLUD contains the names
of all of the tasks whose descriptions are to be copied from
the permanent Data Bank. If all of the descriptions in the
bank are to be used, the user may set INCLUD equal to 'ALL'
rather than specify each task name separately. If all but a
few tasks are to be used, the user may alternately specify
the names of those tasks to be omitted in the IGNORE array.
If no Data Bank is to be used, the variable IGNORE is set
equal to 'ALL'.

9.2.1.3 History Tape Option

Only one option is available. If no output history
tape is to be generated, the variable ITAPE is set equal to
one .

9.2.1.4 Specification of Resource Commitment Tables

As noted in Section 5.1, the characteristics for
each resource commitment table must be supplied as input
data. Three characteristics of each resource commitment
table must be supplied: the name, the maximum number of
entries in the table, and the number of columns in the table
(two for analog resources, three for binary resources).

The characteristics for each table are entered as successive
three-tuples* in the one-dimensional array NEWCOM. Thus,
for the example shown in Table 9.4, a resource commitment
table named POWER is defined as an analog table (two columns)
with a maximum of 150 entries.

*An n-tuple is an ordered set of n elements.

BELLCOMM, INC. 9-10

All resource commitment tables except those for
crewmen are specified through array NEWCOM.* The two char-
acteristics of each crewman, name and skill, are entered as
successive two-tuples in the one-dimensional array NEWCRW.
For convenience, the program already contains the names of
three crewmen: CREWA, CREWB, and CREWC. The corresponding
resource commitment tables have each been allotted 400
entries. If additional crewmen are required, their names
must be specified in array NEWCRW along with a designated
skill (one skill per crewman). If no specific skill is to
be assigned to the crewman, the word 'NONE' should be entered.
The three crewmen already designated (CREWA, CREWB, CREWC)
have no specific skills assigned. To assign a skill to one
of these crewmen, the name and skill are entered in array
NEWCRW as if it were a new entry. Array NEWCRW will accept
a maximum of five two-tuples.

In the example shown in Table 9.4, Array NEWCRW
will have two entries. First, a new crewman named CREWD
is defined without a specific skill. 1In addition, crewman
CREWC, already defined by the program, is assigned the skill
DOCTOR. The resource commitment table for each crewman is
allocated a maximum of 400 entries by the program. If this
is unsatisfactory, the user may assign a new maximum via
variable NCRENT.

The user is cautioned on two points. The first is
to make realistic estimates of the maximum number of entries
for each resource commitment table. As explained in Section
5.1, these maximums are used tc allocate space in the WA Array.
The number of locations allocated to each table in the array
is the product of the maximum number of entries (the actual
number rather than the estimated maximum is used for ephemeris
resource tables) and the number of columns in the table. If
the total number of locations (i.e., the sum of the products)
required exceeds the dimension of the WA Array, the run will
be terminated with an error message (Appendix A -~ Section
A.2.8.2). The WA Array is currently dimensioned to 12,000
locations.

The second point is that Array LTABLE, which acts
as the table of contents to the WA Array (Section 5.1) is
currently dimensioned to 20. Therefore, no more than 20
commitment tables (resource and ephemeris) may be specified.

*Ephemeris resource tables are defined directly from
the ephemeris data tape and therefore need not be specified

in the input data deck.

BELLCOMM, INC. 9-11

9.2.1.5 Specification of Consumables Limits

As noted in Section 7.2, the maximum quantities
and/or usage rates for each consumable must be supplied as
input data. Three characteristics, name, initial quantity
available, and maximum usage rate, for each table are entered
as successive three-tuples in the one-dimensional Array NEWDAT.
If either of the gqualitative characteristics do not apply
to the particular consumable, a value of zero should be
entered. The example in Table 9.4 shows that two consumables,
named OXYGEN and POWER, are entered into Array NEWDAT. OXYGEN
has an initial quantity of 5000.0 available and no specified
usage rate. The consumable POWER has no specified quantity
available but a maximum usage rate of 4000.0. Note that no
units are specified for either the amount available or the usage
rate. To obtain meaningful results, the user must insure
that the quantities specified for the initial amount
available are consistent with the quantities specified for
that consumable on AMOUNT cards. Similarly, the user must
also insure that the maximum usage rate specified in NEWDAT
is consistent with the usage rates specified in the sixth
field on the Resource Cards.

9.2.1.6 Print Options

Two print options are available. The Print
Frequency Flag IPRINT is used to control the printing of
intermediate results. When the flag is set equal to k, the
program will print out the contents of all resource commit-
ment tables every k priority levels. If IPRINT is not
specified, only the final results will be printed.

The variable ITABLE is used to control the printing
of a table that illustrates the calculation of start-time
windows for each task. This option is usually used only for
detailed analysis of particular problems since it results in
a large volume of printout.

9.2.2 Input Data to Complete a Partial Schedule

Comparison of Tables 9.4 and 9.5 shows that the
available input options are significantly narrowed when a
partial schedule is to be completed. The variables for the
two print options (IPRINT and ITABLE) as well as the option
for an output History Tape are the same as described in
Section 9.2.1. 1In addition, the value for the priority

BELLCOMM, INC. 9-12

level indicator IPRIOR must be specified. When IPRIOR is
set equal to k, the schedule will be initialized at the end
of the kth priority level (Section 7.2).

9.2.3 Sample Job Decks

Job decks to illustrate each of the basic options
are shown in Tables 9.6 and 9.7. Table 9.6 illustrates a
job deck to generate a new schedule. A Data Bank stored on
magnetic tape #1000 is assigned to logical unit 2 while an
ephemeris data file placed on tape #1100 is assigned to
logical unit 4. An input History Tape is to be generated
and stored on tape #1200.

The ephemeris and data bank options in the data
deck are consistent with the file assignments. In addition,
two resource commitment tables are defined. The first is
for an analog resource named POWER which may contain up to
175 entries while the second is for a binary resource named
SCILOK. The latter may contain a maximum of 200 entries.

The maximum usage rate for the analog resource POWER is

defined as 4000.0. The deck of task description cards

(Section 4.5) following the input NAMELIST contains edits

to task descriptions for Task SLEEP and defines a new task
named TASKX. Note that the description of TASKX will be

stored on the output History Tape as well as on the auxiliary
drum files TASKANNOT and TASKDESCR, thus making that task
description available to any subsequent runs using that History
Tape (tape #1200) as an input.

Table 9.7 illustrates a job deck that could be
used to complete a partial schedule. Tape #1200, the
History Tape generated from the run described in Table 9.6
is used as the input History Tape for this run and is there-
fore assigned to logical unit 8. The data deck indicates
that the schedule is to be initialized at the end of priority
level 12, e.g., after all of the entries at the 12th priority
level have been made. In this case, the deck of task
description cards following the NAMELIST input consists of
only one edit. The card redefines the priority of task
TASKX so that it will be considered at the 13th priority
level rather than the 20th as it was in the previous schedule.

9.3 Job Deck for the Data Processor

The general structure of the job deck for the ATS
Data Processor is shown in Table 9.8. All four files shown
in the table must be assigned for every run. The program
file ATS*PROCESSOR contains the absolute elements PLTMAP and

BELLCOMM, INC.

Table 9.6

Sample Job Deck for the Generation of a New Schedule

@QRUN ABBNEW, ABB, ATS, 30, 200

@HDG JOB DECK TO GENERATE A NEW SCHEDULE

@ASG,A SCHEDULER

@ASG,T TASKANNOT. ,F

@QUSE 1, TASKANNOT

@ASG, T TASKDESCR. ,F

QUSE 3, TASKDESCR

@ASG,TM 2,T,1000

@ASG,TM 4,T,1100

@ASG,TM 9,T,1200R

@XQT ATS*SCHEDULER -+ SCDMAP

SINPUT

GDATE = 'JuL', 16, 1972,

TIMEL = 14.583

IGNORE= 'M093a‘',

NEWCOM= 'POWER', 175, 2, 'SCILOK, 200, 3

NEWDAT= 'POWER', 0.0, 4000.0,

IPRINT= 5,

SEND
SLEEP/COMMNT, 4, TO 00:10:00 MISSION ELAPSED TIME
SLEEP/TIME, 00:10:00
TASKX/TITLE, 1 Task TASKX
TASKX/COMMNT, 1 THIS TASK REQUIRES THE SERVICES OF
TASKX/COMMNT, 2 CREWMAN CREWA FOR 30 MINUTES.
TASKX/PRI, 20
TASKX/OBJEC, 1,1
TASKX/RES, CREWA, 00:00:00, 00:00:30
LAST

@FIN

BELLCOMM, INC. 9-14

Table 9.7

Sample Job Deck to Complete a Partial Schedule

@RUN
@HDG
@ASG,A
@ASG,T
QUSE
@ASG,T
QUSE
@ASG,TM
@XQT
$INPUT
IPRIOR=12,
ITAPE=1,
IPRINT=1,
$END
TASKX/PRI,
LAST
@FIN

ABBPAR, ABB, ATS, 30, 200

JOB DECK TO COMPLETE A PARTIAL SCHEDULE
ATS*SCHEDULER

TASKANNOT. ,F

1, TASKANNOT

TASKDESCR. ,F

3, TASKDESCR

8,T,1200

ATS*SCHEDULER - SCDMAP

13

BELLCOMM, INC. 9

15

Table 9.8

Structure of the Job Deck for the ATS Data Processor

@RUN
@HDG
@ASG,A
@ASG,T
@USE
@ASG,T
@USE
@ASG,TM

@QASG,TM
@xQT
$INPUT

SEND
SINPUT

SEND
@XQT
@FIN

ABBPLT, ABB, ATS, 30, 200
JOB DECK FOR THE ATS DATA PROCESSOR
PROCESSOR

TASKANNOT. ,F

- hasd ANyl

1,TASKANNOT

TASKDESCR. ,F

3,TASKDESCR

8,T,XXXX (Assign input History Tape and relate
it to the logical unit 8)*

PLOTFILE., T,PLOT (Assign output plot tape)

ATS*PROCESSOR -PLTMAP

[NAMELIST Variables]

[NAMELIST Variables]

ATS*PROCESSOR +*PHASE?2

*Note:

xxxx denotes the reel number of the particular

magnetic tape.

BELLCOMM., INC. 9-16

PHASE2 which must be executed in the sequence shown to

produce the output plot tape that is input to the SC-4020
plotter. The drum files TASKANNOT and TASKDESCR again contain
the task annotation and descriptor lists which are obtained
from the input History Tape.

As noted in Section 8.2, any number of plots may
be generated in a single run but each set of plot description
data must be input separately. Each plot is described in
a separate set of NAMELIST input data and so more than one
set may be included in a job deck.

9.3.1 Processor Data Deck

The NAMELIST statement for the Data Processor
contains the 15 variables defined in Table 9.9. A subset
of these variables must be specified in each set of NAMELIST
input data but the variables included in that set depend upon
the type of graph requested. Table 9.10 lists the specifi-
cation options available to the user. Note that the variables
marked with an asterisk will retain their values for the
duration of the run. Once specified, therefore, these
variables need only be redefined when the values must be
changed.

9.3.1.1 Priority Level Option

The input value of IPRIOR serves the same function
in the Data Processor as it does in the Schedule Generator:
to provide scheduling data representing a particular point
in the scheduling process. A value of IPRIOR>0 must be
specified.

9.3.1.2 Plot Interval

TBEGIN and TEND, the lower and upper endpoints of
the plot interval must be specified for every plot.

9.3.1.3 Graph Label

Array TITLE contains the 48 characters that will
be written at the top of each frame of the graph. Any title
containing a maximum of 48 characters (including blanks) may
be specified. The title will be printed exactly as it
appears between the gquote marks on the input card.

2.3.1.4 Specifications for Coaxial (Horizontal) Plots

Only two variables must be specified to describe
a horizontal plot. HDEP contains the names of the variables

* (ST FO umwTxeu)
301d otpotxad ® uo sjutod se psjussoxdex
9q O3 ©IF S9OUDIANDDO IDSOUYM SOTARTIRA

9-17

2yl Jo soweu sy3 fututejuoo XKexay Y3 TISTIOH (sT) INTOJdA
* (¢ Fo umwtxew) 3joT1d
potaxad ® uo s3X0(q poOpeys se pojussaadsa
9q 03 SIF S3OUSIINDDO DSOUM SOTARTIRA
?y3 Fo saweu ay3z buTtuTejzuod Keixy U3 TISTTOH (€) JAYHSA
*ON:T ’‘SEX:0
:s301d oTpotaad 103 bBeld I03EOTIPUT PTIH - x8bajur (T) dTYOA
*973T3 301d 9yl se posn 99 03 SIDJORILYD
oTxsumueydre gy oyl butureizuocd Aeiivy U3 TISTTOH (8) ATLIL
* (sAep) Teaxsjur 3o01d ¥yl 3o jurtodpus xaddpn jurtod burtjeord (1) aN=L
* (sfep) Teaxsaut 301d Syl Jo jurodpus I9MOT jurog burzeoTd (1) NIDALL
* (sfep) TeAID93UT SWII Suo Fo yzbust jutog butieord (1) T3
* (sfep) swexl suo uo palkerd
-STp ©q 03 TeAIS3UT SWI3 3Y3z FO yzbusod jurod burjeotd (D ddd
*swexl suo uo poaoetd
9 03 (SSUTT) STeRAIDIUT SWTI3 JFO ISqUNN asbsjur (T) JaT
*3sonbax j307d 3ser ay3 burjzeorpur berd Ioboajur (1) LSVY1T
“SAX:T ‘ON:Q “e3ep po3joaTTod IT®
J0 3no butjutad syz TOIIUOD 03 HeTd Isbojur (1) anunay
I03eOTPUI T9A3T A3TIOTI4 xsba3ur (1) ¥0oI1ddI
* (¢ o umutxew) ydexh (Tejzuozraoy)
TeIXeOD B UC PSPNTOUT IS¢ 03 SOTIRIIRA
9yl Jo ssweu syl buTuTeluod AvIIy Y3 TISTTOH (s) JdaaH
uoT3ITUTISQ Jewrod e3ed UOTSUSUWTQJ o9TgeTIRA
NYI 1304

juswelels ILSITIAWYN IOSS900Id BIRd SYJ UT POPNTOUT SOTRTIBA

6°6 9TAedL

9-18

*oureay
zod skep (°T JO ©TeDS Te3lUOZTIOY ®
031 pe3307d oq 03 st ydeab TeTxeod ayy

ydeab TeTxXRO0D ®
uo pa3307d 99 03 9I' YIMOd Pue ‘XMSYIL
‘YMH¥D psweu soTqeTIeA 9yl I03 eied

*ydeab

92Uyl jyo sweay Axsad jo dol ay3z ssoaoe
3no psjutad o9 03 ST ,SYAIOVIVHD 8% JO
WAWIXVIW ¥ HLIM HTILIL HAVYED, °TI3T3 9yl

*pa330Td ogq 03 Baae
skep ¢*z pue (°7 us®smiaq sjurtod TV

*POISPISUOD

usaq aary Tsa9T A3Taotad y3lQl oYz 2ae
s)sel 8yl JO [Te I93Je Sniels ITayl o3
seTqel ITe 9zTTeT3TUT 03 ade] AI03STH
Indut 8yl woxz paoosi ojeradoadde peoy

*poUTISpPaI TTIJIUN POUTLIDT ST ONTRA «

4

0°T = dda¥

o0 1 ,9EMod, (XS YL, L YMEED, = JdddH

S9TqeTIRA 3OTd [RIXEOD

Y SYALOVEVYHD 8%

d0 WANIXVW ¥V HLIM HTLIL HAYYED, = ATIIL

‘0

‘0°1

‘01

d0SSHD0dd YIVA SLVY dHI ¥O0d SNOILAO NOILVIOIJAIOAAS LSITAWYN

0T°6 STgedL

T2qeT ydean

‘7 = ANEL

= NIDIddL

Teax®]lul 30Td

= JO0I¥dI

12497 A3TIOTag

*

¥

9-19

*3sonbsx jo071d 3seT1 8yl ST STYL

*3no
pojutad oq 03 ST elep pPO3OLTTod TTVY

*possoaxddns aq
03 9xe 307d orpotraad ®Y3z uo SSUTIT PTID

*30T7d orpotaad © JO swexl auo uo aeadde
03 9I® (SSUTT) STPAID3UT SWTIIF O

*shkep Q°z 3uesaadsx o3 sT 307d
OTpoTaad ® UO (SUTI) T[PAIDIUT SWTIJF BUQ

*30Td orpotaad
© UO sox0q popeys se ps3jzord aq o3
9Je YMHYUD OIdeIaes oYl JO S90U2IINDDQ

*301d
otpotaad ® uTr sjutod se poa3j301d aq 03
axe XMSVI 9TdeTIea Syl JO Sa0UDIINDDQ

(*3uo0d) 0T°6 @T9BL

*pOUTIOpPOI TTIUN POUTRISDI ST SNTBA

‘1

‘T

LSYT

I

dnna3i

1013uU0) wexboxd

T = dIYDA

‘0T = 447

‘0°C = 1Jq¥
 ¥MIYD, = HAVHSA
£V XMSYL, = INIOdA
SeTqeIIRA 3O0Td OTIpPOTIag

*

BELLCOMM, INC. 9-20

to be plotted while the value of variable RPF specifies
the length of the time interval to be displayed on one
frame,

9.3.1.5 Specifications for Periodic Plots

As noted in Section 8.2, the user must specify
in the input data how the occurrences of each variable are
to be displayed. Array VPOINT therefore contains the
names of the variables whose occurrences are to be displayed
as points while Array VSHADE contains the names of those
variables whose occurrences are to be displayed as shaded
boxes. RPL and LPF must also be specified. Finally, the
flag VGRID is set equal to one if the grid lines on the
plot are to be suppressed.

9.3.1.6 Program Control Options

The variable KDUMP controls the printout of
collected data. When KDUMP is set equal to one in the
data deck all of the data points for each variable will
be printed out during the execution of Phase 2. This
option is used primarily as a diagnostic tool. Finally,
the variable LAST must be set equal to one in the last set
of plot data in order to terminate the execution of Phase 1.

9.3.2 ©Sample Job Deck

Table 9.11 shows the job deck required to
generate the three graphs illustrated in Figures 3.2 and
3.3. Three sets of NAMELIST input data are required.
The first set requests that the entries in the resource
commitment tables for each of the three crewmen be displayed
on a coaxial plot. All entries between two and three days
are to be displayed to a scale of one day per frame. The
setting of the variable IPRIOR requires that the data at the
44th priority level be displayed.

The second data set also requests coaxial plots.
The third set, however, requests periodic plots. 1In the
latter set, the occurrences of the Task LUNCHA are to be
plotted as points while the occurrences of the variable DAY
and the Task REST are to be displayed as shaded boxes. All
occurrences between one and seven days are to be displayed to
scales of one day per line and six lines per frame. Since
IPRIOR is not specified in the second or third data sets,
the corresponding graphs will also use the data from the
44th priority level.

BELLCOMM, INC. 9-21

Table 9.11

Sample Job Deck for the ATS Data Processor

@RUN ABBPLT, ABB, ATS, 30, 200

@HDG JOB DECK TO GENERATE HORIZONTAL & VERTICAL PLOTS
@ASG,A PROCESSOR

@ASG, T TASKANNOT. ,F

@QUSE, 1,TASKANNOT

@ASG,A TASKDESCR.,F

QUSE 3,TASKDESCR

@QASG, TM 8,T,1200

@QASG,TM PLOTFILE.,T,PLOT

@XQT ATS*PROCESSORePLTMAP

SINPUT

IPRIOR=44,

TBEGIN=2.0,

TEND=3.0,

TITLE='COAXIAL PLOTS OF CREW TIMELINES',
HDEP='CREWA', 'CREWB', 'CREWC',

RPF=1.0,

SEND

SINPUT

TBEGIN=2.0

TEND=3.0,

TITLE='COAXIAL PLOTS OF CREWA, LUNCHA, POWER, AND S/C DAY',
HDEP='CREWA', 'LUNCHA', 'POWER', 'DAY',

RPF=1.0

SEND

BELLCOMM, INC. 9-22

Table 9.11 (cont'd)

SINPUT

TBEGIN=1.0,

TEND=7.0,

TITLE='PERIODIC PLOTS OF S/C DAY, REST, AND LUNCHA',
VPOINT='LUNCHA',
VSHADE='DAY', 'REST',
RPL=1.0,

LPF=6,

LAST=1,

SEND

@XQT ATS*PROCESSORePHASE?2
@FIN

BELLCOMM, INC.

10.0 Recommendations for Future Work

The implementation of the ATS represents the
first phase in an investigation into the nature of the
scheduling process. Future work on the ATS should be
concerned with expanding its capabilities to meet the
operational needs arising from two areas of investigation.
The first is concerned with defining one or more parameters
to measure the effectiveness of a particular schedule,
i.e., parameters that will aid the user in evaluating
the relative merits of different schedules. Since the
nature of these parameters cannot be completely antici-
pated, the feasibility of expanding the Data Processor
to perform any set of user-formulated calculations will
be investigated.

The second area of investigation should be
directed toward determining a meaningful dynamic priority
system which could be overlaid on the static priority
system now in the ATS. The dynamic system would reflect
the effect of current scheduling decisions on future
opportunities and would indicate the order in which a
subgroup of tasks having the same static priority rating
should be scheduled. Allied with this problem is the
selection of the proper start-time from within the defined
start-time windows. In the present version, the earliest
possible start-time is chosen arbitrarily but a selection
made on a more analytical basis is obviously more desir-
able. The first step in this investigation will be to
modify the Schedule Generator to keep track of the reason
for tasks not being scheduled. This modification will
enable the user to quickly determine which of the task
requirements or constraints is preventing the scheduling
of the task. This knowledge should lead to a broader
understanding of the cause and effect relationship between
current decisions and future alternatives.

BELLCOMM, INC.

11.0 Summary

The Automated Task Scheduler, a group of computer
programs designed to produce and display mission timelines
(or schedules) for manned space missions, has been implemented.
The system consists of three computer programs:

1. A Schedule Generator that generates a
time history of the commitments for each
designated resource and a corresponding
list of start-times for each task.

2. A Data Processor that displays timeline
data in graphical form.

3. A Data Bank Generator that creates and
edits a permanent task Data Bank.

The primary output of the Schedule Generator is a set of
resource commitment tables and a list of start-times for
each task. On option, however, intermediate results can
be recorded on a History Tape which can be used on a
subsequent run to initiate the scheduling process at some
intermediate point. Hence, the Schedule Generator can

be used to complete a partial schedule as well as generate
a completely new schedule.

The History Tape is also used as an input to
the Data Processor which is used for graphically displaying
the timeline data produced by the Schedule Generator.
Two types of plots can be generated: coaxial and periodic.
Coaxial plots can display up to five binary and/or analog
variables on a single set of axes. The periodic plots are
used to overlay the occurrences of different binary vari-
ables and hence illustrate recurring patterns and the
interrelationship between different variables.

One of the most important tasks in implementing
the ATS was the development of a flexible input language
capable of translating a wide variety of resource require-
ments and performance constraints into statements that
could be recognized by the Schedule Generator. The resulting
Task Description Language (TDL) consists of 12 card formats.
Seven of these formats (the Priority, Objective, Time,
Amount, Enable, Inhibit, and Resource Cards) are used to
translate resource requirements, performance restrictions,
and performance objectives into statements that can be

BELLCOMM, INC. 11-2

processed by the Schedule Generator. Two additional
formats (the Title and Comment Cards) are provided to
annotate the Descriptor Cards with alphanumeric comments.
The final three formats (the Equivalence, Delete, and
Last Cards) are used as control statements.

If the user establishes a data base consisting
of a large number of task descriptions, he may, for
convenience, store these descriptions on a Data Bank file
using the Data Bank Generator Program. The descriptions
on this bank can then be selectively copied by the Schedule
Generator for each run, thus relieving the user of having
to input a largec number of cards. The task descriptions
for the Schedule Generator run are stored on temporary drum
files for the duration of that run and hence may be edited
for that run without affecting the descriptions stored on
the Permanent Data Bank.

When generating a schedule, the Schedule Generator
considers each task once, the order of consideration being
specified by the user. For each task, the program first
determines acceptable start-time windows (i.e, continuous
intervals during which the task may be initiated) and then
selects start-times for as many repetitions of the task as
are required by selecting points from within the windows.
The process continues until all tasks have been considered.
When a performance of a task is scheduled, the commitment
tables for each resource required by the task are updated
to reflect the commitment of that resource to that task.

Two methods of dynamic storage allocation were
used in implementing the ATS algorithm in order to reduce
the amount of required core space. The ephemeris and
resource tables are all stored in one large working array
that is partitioned off at the start of the program
according to user estimates of table size. In contrast,
the task descriptions, start-time windows, and lists of
task start-times are stored in a list structure using Sac-1,
a FORTRAN-imbedded list-processing language.

Acknowledgment

The author wishes to express his appreciation to
Miss M. P. Odle and to Mr. R. F. Jessup for their advice
on the use of the SAC-1 and AUPLOT Systems respectively,
and to Miss D. P. Nash who helped with the programming of

the ATS. /(w,;f}’f::ZD ;
(A ;) e fé”é”k/\
1025-ABB-11i A. B. Baker

Attachments

BELLCOMM, INC.

10.

References

A. B. Baker
"A Survey of Automated Scheduling Models"
Bellcomm Memorandum for File B69 04020, April 7, 1969.

D. P. Nash

"ATSEPHEM - A Program to Generate an Ephemeris Data
Tape for the Automated Task Scheduler”

Bellcomm Memorandum for File In Preparation

M. S. Feldman
"'Pick a Day" Experiment M093 Requirements - Case 610"
Bellcomm Memorandum for File B70 04026, April 7, 1970.

Ivan Flores, Computer Programming, Prentice-Hall, Inc.,
Englewood Cliffs, N. J. (1966)
Chapter 9, pp. 257-262.

Knuth, Donald E., The Art of Computer Programming,
Vol. I, Addison-Wesley, Reading, Mass. (1968)
Chapter 2, pp. 228-435.

Sherman, P. M., Technigues in Computer Programming,
Prentice-Hall, Inc., Englewood Cliffs, N. J. (1970)
Chapter 12, pp. 226-233.

G. E. Collins

"The SAC-1 List Processing System"
Computer Sciences Department
University of Wisconsin, July 11, 1967.

M. P. Odle
"SAC-1 System for List Processing and Formula Manipulation"
Bellcomm Memorandum for File B70 04001, April 1, 1970.

D. P. Nash

"Processing Task Description Cards in the Automated Task
Schedulexr"

Bellcomm Memorandum for File B70 12062, December 23, 1970.

"Programmers' Reference Manual
SC-4020 High-Speed Microfilm Recorder"
Stromberg-Carlson Document #9500056, October 1964.

BELLCOMM, INC.

11.

12.

13.

14.

References (cont'd)

R. F. Jessup
"AUPLOT System Description"
Bellcomm Memorandum for File B69 10116 October 27, 1969

R. F. Jessup

"AUPLOT II - A System of Data Handling and Plot
Subroutines for Computer Graphics"

T™M-70-2011-2 November 20, 1970

"EXEC 8 - User's Manual"
Bellcomm, Inc. August 1968
Section V

"UNIVAC 1108 Multi-Processor System Programmer's
Reference Manual"

Sperry-Rand Corporation, 1969

pp. 6-13 through 6-17.

BELLCOMM, INC

APPENDIX

ATS Error Diagnostics

A.0 Introduction

The wide variations in input data permitted by
each of the ATS programs make it almost inevitable that
the user will, at some time, violate one or more of the
usage rules described in this manual. These violations
will usually result in either the generation of erroneous
information or the termination of the run by the computer
executive. In order to prevent these alternatives and to
aid the user in pinpointing these violations, a system of
error terminations has been incorporated into each of the
ATS programs. A diagnostic message is printed out with
every termination. Each message includes the name of the
subroutine in which the message is generated and the reason
for the termination.

The messages generated by each of the ATS programs
are presented in Sections A.l through A.3. Within each
section the messages are grouped according to the subroutines
in which they are generated. Each message is printed in
capital letters and is accompanied by an explanation. 1In
all cases, the lower case letter k and names appearing
inside qguotation marks are inserted for purposes of illustra-
tion. They will be replaced with real data in the computer
printout.

BELLCOMM, INC. A2

A.l Data Bank Generator Diagnostic Messages

A.l.1 THE FIRST DESCRIPTOR CARD FOR
TASK 'TASKX' IS NOT A PRIORITY
CARD

The first Descriptor Card encountered for any
task must be a Priority Card. The user should rearrange
the input sequence of Task Description Cards so that the
sequence rules described in Section 4.3.1 are satisfied.

A.l.2 THE PERFORMANCE OBJECTIVES FOR
TASK 'TASKX' HAVE NOT BEEN DEFINED
This message is generated when the second
Descriptor Card encountered for Task TASKX is not an
Objective Card. The user should rearrange the input

sequence of Task Description Cards so that the sequence
rules described in Section 4.3.1 are satisfied.

A.1.3 THE CARD TYPE 'TYPEX' SPECIFIED
IN FIELD 2 OF A DESCRIPTOR CARD
FOR TASK 'TASKX' IS NOT A VALID
CARD TYPE
The alphanumeric combination 'TYPEX', specified
in Field 2 of a Task Description Card, does not match any
of the 11 card types described in Section 4.2. The user
should insure that the designation in Field 2 matches one

of the type designators shown in Table 4.2 and that all
of the field delimiters have been included.

A.l.4 TASK 'TASKY' NAMED oN FIELD 3
OF THE EQUIVALENCE CARD FOR TASK
'TASKX' HAS NOT BEEN DEFINED
This message will be generated by either of two

possible errors. Either the name of the task appearing in
Field 3 does not appear exactly as it appeared on its own

BELLCOMM, INC. A-3

set of Task Description Cards or the input sequence of
Task Description Cards is incorrect. In the latter case,
the sequence must be rearranged so that the task named in
Field 3 is defined before the Equivalence Card is encoun-
tered (Section 4.3.2).

A.1.5 THE FIRST DESCRIPTION CARD FOR
TASK 'TASKX' IS NOT A TITLE CARD

The first Description Card for any task must be
a Title Card. The user should rearrange the input of Task
Description Cards so that the sequence rules described in
Section 4.3.1 are satisfied.

A.l.6 THE NUMBER OF TASKS TO BE
STORED IN THE DATA BANK, k,
IS GREATER THAN THE NUMBER
OF ENTRIES PERMITTED IN THE
TOC ARRAY

The number of tasks that can be stored in the
Data Bank is limited by the dimension of the TOC Array
(Section 6.0). This message indicates that the maximum
has been exceeded.

A.l.7 OUT OF AVAILABLE SPACE

This message is generated by Subroutine NOAVLS,
an element in the SAC-~1 System. The message indicates that
there are no cells cn the Available Space List (Section 5.0).
Since cells are continually being returned to the list, the
complete deletion of the list could arise from a unigque
combination of schedule characteristics and data generation.
A slight variation in these characteristics (e.g. varying
the order in which the tasks are considered) usually elimi-
nates the problem. If the problem persists, the Available
Space List should be increased by increasing the dimension
of Array ASL.

BELLCOMM, INC. A-4

A.2 Schedule Generator Diagnostic Messages

A.2.1 Messages Generated in Subroutine CREW

A.2.1.1 TASK 'TASKX' HAS A MULTIPLE
REQUIREMENT ON CREWMAN 'CREWX'
BY SPECIFIC NAME AND BY SKILL
'SKILLX'

The task description for TASKX contains a
Resource Card that specifies Crewman CREWX in Field 3

-~ o A
L] e e AT N de TVVLLLGLLL Nl TV L O S ~ Aliu

another Resource Card that specifies skill SKILLX in Field 3.
Since Crewman CREWX has been assigned SKILLX, the effect is

to have more than one requirement on the same resource in

the same task description which is not permitted (Section 4.4).

A.2.1.2 THE NUMBER OF UNDESIGNATED
CREWMEN FOR 'TASKX' EXCEEDS
THE NUMBER OF UNASSIGNED
CREWMEN AVAILABLE
The number of Resource Cards for Task TASKX with
the ANY designation in Field 3 exceeds the number of unassigned

crewmen (i.e., the total number of crewmen less the number
designated by specific name and skill) available.

A.2,2 Message Generated in Subroutine ENTRY

A.2.2.1 SCHEDULING OF TASK 'TASKX' WILL
EXCEED THE ALLOTTED SPACE IN
THE 'RESNME' COMMITMENT TABLE
If the RESNME commitment table is updated to
reflect the allocation of that resource to Task TASKX, the

maximum number of entries permitted for that table will be
exceeded (Section 5.1.2).

BELLCOMM, INC.

A.2.3 Messages Generated in Routine MAIN

A.2.3.1 THE RESOURCE 'RESNME' NAME ON
FIELD 3 OF AN AMOUNT CARD FOR
TASK 'TASKX' DOES NOT APPEAR
IN ARRAY DTABLE

The alphanumeric combination RESNME does not
match any of the names specified as consumables in Array
DTABLE. The user should check to insure that the name
specified on the Amount Card is identical to the name
specified in the NAMELIST input via Array NEWDAT (Sec-
tions 4.2.1.7 and 9.2.1).

A.2.3.2 THE NUMBER OF TASKS, k, TO BE

SCHEDULED IN THIS RUN IS GREATER

THAN THE NUMBER OF ENTRIES

PERMITTED IN THE LNAMES AND

ORDER ARRAYS

The maximum number of tasks that can be scheduled

in any one run of the Schedule Generator is limited by the
dimension of the LNAMES and ORDER Arrays. This message
indicates that the maximum has been exceeded. The current
version of the ATS permits a maximum of 200 tasks to be
considered for scheduling in any one run. This maximum can

only be increased by increasing the dimension of the LNAMES
and ORDER Arrays (Section 7.0).

A.2.3.3 THE INDEPENDENT TASK 'TASKX',
NAMED ON A 'TYPE' CARD FOR
DEPENDENT TASK 'TASKY', DOES
NOT APPEAR IN THE ORDER ARRAY
This message indicates that the dependent task,
TASKY, has become a candidate for scheduling before the

independent task named on an Enable or Inhibit Card which
is not permitted (Sections 4.2.1.5 and 4.2.1.6).

BELLCOMM, INC. A-6

A.2.3.4 OUT OF AVAILABLE SPACE

See Section A.l.7.

A.2.4 Message Generated in Subroutine MULTI

A.2.4.1 THE NUMBER OF WINDOWS IN THE
k SECTION OF START-TIME
WINDOWS FOR TASK 'TASKX' IS
GREATER THAN THE MAXIMUM SPACE
ALLOTTED IN ARRAY WIN

The amount of data to be entered into the internal
working Array WIN exceeds the maximum dimensions of that
array. The amount of data (in this case, lists of start-time
windows) generated depends upon a unique combination of time-
line characteristics that exist at the point in the scheduling
process where TASKX is being considered. A slight variation
in these commitments (e.g., in the order in which the tasks
are considered for scheduling) will usually eliminate this
problem. If the problem reoccurs the dimension of Array WIN
should be increased.

A.2.5 Messages Generated by Subroutine RESRCE

A.2.5.1 THE NAME 'RESNME' SPECIFIED IN
FIELD 3 OF A RESOURCE CARD FOR
TASK 'TASKX' DOES NOT MATCH ANY
NAME IN ARRAY LTABLE

The alphanumeric combination 'RESNME' does not
match any of the names of the commitment tables stored in
Array LTABLE (Section 5.1). The user should insure that
the name specified on the Resource Card is identical to
one of the names specified in the input data via Arrays
NEWCOM and NEWCRW in the NAMELIST input or via the ATS
Ephemeris Tape. This message will also be generated if the
resource name defined in the input data ends on a numeral
rather than a letter as required (Sections 4.2.1.7 and 9.2.1).

BELLCOMM, INC. A-7

A.2.5.2 THE NAME 'RESNME' SPECIFIED IN
FIELD 3 OF A RESOURCE CARD FOR
TASK 'TASKX' DOES NOT MATCH
ANY NAME IN ARRAY DTABLE

The alphanumeric combination 'RESNME' does not
match any of the names specified as consumables in Array
DTABLE. The user should check to insure that the name
specified on the Resource Card is identical to the name
specified in the NAMELIST input via Array NEWDAT (Section
9.2.1).

A.2.6 Messages Generated in Subroutine SCHED

A.2.6.1 THE NUMBER OF SECTIONS OF START-
TIME WINDOWS FOR TASK 'TASKX' IS
GREATER THAN THE NUMBER OF ENTRIES
PERMITTED IN THE SEC ARRAY

The amount of data to be entered into the internal
working Array SEC exceeds the maximum dimensions of that
array. The amount of data (in this case, lists of start-time
windows) generated depends upon a unigue combination of time-
line characteristics that exist at the point in the scheduling
process where TASKX is being considered. A slight variation
in these commitments (e.g., on the order in which the tasks
are considered for scheduling) will usually eliminate this
problem. If the problem reoccurs, the dimension of Array
SEC should be increased.

A.2.6.2 THE DESIRED NUMBER OF PERFORMANCES,
k, SPECIFIED FOR TASK 'TASKX'
EXCEEDS THE NUMBER OF ENTRIES
PERMITTED IN ARRAY LVWIN
The desired number of performances specified in

Field 4 of the Objective Card for Task TASKX exceeds the
row dimension of Array LVWIN (Section 4.2.1.2).

BELLCOMM, INC. A-8

A.2.7 Messages Generated by Subroutine SETUP

A.2.7.1 THE FIRST DESCRIPTOR CARD FOR
TASK 'TASKX' IS NOT A PRIORITY
CARD

See Section A.l.1.

A.2.7.2 THE PERFORMANCE OBJECTIVES FOR
TASK 'TASKX' HAVE NOT BEEN
DEFINED

See Section A.l1.2.

A.2.7.3 THE CARD TYPE 'TYPEX' SPECIFIED
ON FIELD 2 OF A DESCRIPTOR CARD
FOR TASK 'TASKX' IS NOT A VALID
CARD TYPE

See Section A.1l.3.

A.2.7.4 NO DATA BANK OPTION HAS BEEN
SPECIFIED IN THE NAMELIST INPUT

As shown in Table 9.4, one of the four data
bank options must be specified in the input NAMELIST.

A.2.7.5 TASK 'TASKY' NAMED IN FIELD 3
OF THE EQUIVALENCE CARD FOR
TASK 'TASKX' HAS NOT BEEN
DEFINED

See Section A.l.4.

BELLCOMM, INC. A-9

A.2.7.6 THE FIRST DESCRIPTION CARD FOR
TASK 'TASKX' IS NOT A TITLE CARD

See Section A.l.5.

A.2.7.7 OUT OF AVAILABLE SPACE

See Section A.l1.7.

A.2.8 Messages Generated by Subroutine TABIN

A.2.8.1 THE INPUT PARAMETERS DO NOT
MATCH THE LAUNCH PARAMETERS
ON THE ATS EPHEMERIS TAPE

INPUT LAUNCH PARAMETERS
DATE 'JAN. 1, 1972'
TIME '15.00' HRS
ATS EPHEMERIS LAUNCH PARAMETERS
DATE 'NOV. 9, 1972
TIME '15.00' HRS
The launch date and time specified through

variables GDATE and TIMEL in the NAMELIST input do not
match their counterparts on the ATS Ephemeris Tape.

A.2.8.2 THE TOTAL REQUIRED SPACE IN
THE WA ARRAY IS GREATER THAN
THE DIMENSION OF THE ARRAY

The sum total of locations allocated to all of
the tables stored in the WA Array has exceeded the dimension
of the array (Section 9.2.1.4). The total number of required
locations should be reduced either by reducing the number of
locations allocated to some of the tables defined in Array
NEWCOM or by removing some of the tables from the ATS Ephemeris
Tape (Section 3.2.1).

BELLCOMM, INC. A-10

A.2.8.3 ARRAY LTABLE HAS NO SPACE TO
ACCOMMODATE ENTRY 'RESNME'

The names of all Resource Tables stored in the
WA Array must be entered in Array LTABLE, (Section 5.1.2).
The names are entered into the array in the following
sequence:

l. Crewmen CREWA, CREWB, CREWC,

2. The names of all new tables defined in Array
NEWCOM (Section 9.2.1.4).

3. The names of all crewmen defined through
Array NEWCRW.

4. The names of all Ephemeris Resource Tables
stored on the ATS Ephemeris Tape.

The message indicates that the total number of
tables defined prior to Table RESNME equals the maximum
number of entries permitted in Array LTABLE. To eliminate

the problem therefore, the total number of tables being
defined must be reduced or the dimension of Array LTABLE
must be increased.

A.2.8.4 ARRAY CRWSKL HAS NO SPACE TO
ACCOMMODATE 'CREWX'

The names of all crewmen must be entered in
Array CRWSKL (Section 7.2). New crewmen (other than CREWA,
CREWB, and CREWC) are entered in the CRWSKL Array in the
order in which they are specified in input Array NEWCRW.
The message indicates that the total number of crewmen
defined prior to Crewman CREWX equals the maximum number

of entries in the CRWSKL Array. Therefore, the total
number of crewmen being defined must be reduced.

A.2.9 Message Generated by Subroutine WINDOW

A.2.9.1 THE TOTAL NUMBER OF RESOURCE
REQUIREMENTS AND PERFORMANCE
CONSTRAINTS SPECIFIED FOR TASK
'"TASKX' IS GREATER THAN THE
MAXIMUM NUMBER OF ENTRIES
PERMITTED IN THE REQ ARRAY

Each location of Array REQ, an internal wgrking
array, is to contain the address of one of the requirement

BELLCOMM, INC. A-11

or constraint sublists in the Task Description List
(Figure 5.6). The message indicates that the number
of these sublists is greater than the maximum number
permitted by the dimension of the array.

The REQ Array is currently dimensioned to 33,
the maximum number of requirements that can be specified
in a task description (since, as noted in Section 5.3.2.3,
the maximum number of Descriptor Cards that can be
specified in a task description is 35). Therefore, the
only conditions under which this message would be generated
would be if the permissible number of Task Description
Cards was increased without increasing the dimension of
the REQ Array.

BELLCOMM. INC. A-12

A.3 Data Processor Diagnostic Messages

A.3.1 Message Generated in Routine ATSPLT

NO DEPENDENT VARIABLES HAVE
BEEN SPECIFIED

The names of the variables to be plotted have
not been specified in the input data (Sections 9.3.1.4
and 9.3.1.5).

A.3.2 Message Generated in Subroutine HPLOT

-

A.3.2.1 THE DEPENDENT VARIABLE 'NAME'

DOES NOT MATCH ANY OF THE RESOQURCE

NAMES LISTED IN ARRAY LTABLE OR

ANY OF THE TASK NAMES LISTED IN

ARRAY ORDER

The alphanumeric combination 'NAME', specified

in Array HDEP, cannot be identified. The user should
check to insure that the name that appears in Array HDEP
identically matches the name of a resource table stored

in Array LTABLE or the tame of a task stored in Array
ORDER (Section 8.3.1).

A.3.2.2 NO PERFORMANCES OF TASK 'TASKX'
HAVE BEEN SCHEDULED
No performances of Task TASKX were scheduled;

hence, no graph of the occurrences of Task TASKX can be
generated.

A.3.3 Message Generated in Subroutine VPLOT

A.3.3.1 THE~ DEPENDENT VARIABLE 'NAME' DOES
NOT MATCH ANY OF THE RESOURCE NAMES
LISTED IN ARRAY LTABLE OR ANY OF
THE TASK NAMES LISTED IN ARRAY ORDER

The alphanumeric combination 'NAME' specified in
Array VPOINT or VSHADE cannot be identified. The users

should check to insure that the name that appears in the

o
’]
%

BELLCOMM, INC. A-13

array input identically matches the name of a resource
table stored in Array LTABLE or the name of a task stored
in Array ORDER (Section 8.3.1).

A.3.3.2 NO PERFORMANCES OF TASK 'TASKX'
HAVE BEEN SCHEDULED
No performances of Task TASKX were scheduled,

hence, no graph of the occurrences of Task TASKX can be
generated.

A.3.3.3 DEPENDENT VARIABLE 'RESNME' IS
LISTED IN LTABLE AS AN ANALOG
RESOURCE. ANALOG RESOURCES
CANNOT BE DISPLAYED ON PERIODIC
PLOTS
The dependent variable RESNME was identified

as the name of an analog resource table. Analog resources
cannot be displayed on periodic plots (Section 8.4).

BA-146 (8-64)

BELLCOMM, INC.

COMPLETE MEMORANDUM TO

CORRESPONDENCE FILES:

OFFICIAL FILE COPY

plus one white copy for each
additional cose referenced

TECHNICAL LIBRARY (4}

NASA Headguarters

H. Cohen/MLQ

J. H. Disher/MLD

W. B. Evans/MLO (2)
J. P. Field, Jr./MLB
T. E. Hanes/MLA

V. N. Huff/MTE (2)
T. A. Keegan/MTE

A. S. Lyman/MR (2)
M. Savage/MLE

W. C. Schneider/ML
D. N. Turner/MF

mMsc

B. L. Brady/FS5

R. H. Brown/FM3

J. B. Cotter/Cr34

B. E. Ferguson/CF34
J. A. Frere/FS4

J. B. MacLeod/FS

R. E. McAdams/FM3
MSFC

G. B. Hardy/PM-AA-EI
T. E. Telfer/S&E-AERO-MM

Aerospace Corporation

DISTRIBUTION

™- 71-1025-1

L. T. Stricker
R. R. Wolfe

University of Wisconsin

G. E. Collins

COMPLETE MEMORANDUM TO (Cont'd)

Bellcomm, Inc.

A.
J.

Boysen, Jr.
Downs

Hagner

Heffron

Helm

Hillyard
Hinners

Jessup

Ling

Long
Martersteck
Menard

Nervik

Odle

Penn

Sennewald
Sperry

Thompson

Timko

Wagner

M. P. Wilson
Division 101 Supervision
Departments 1022, 1024, 1025
Department 1024 Files

TRy gR-oRz2HGmE0

CPEo<<H"HpbPWENEDRYEIEHOgPQ YYD

WG s

